Câu hỏi: Tìm argument φ của số phức \(z = \frac{{{{(1 + i\sqrt 3 )}^{10}}}}{{ - 1 + i}}\)

164 Lượt xem
30/08/2021
2.4 5 Đánh giá

A. \(\varphi = \frac{{ - \pi }}{{12}}\)

B. \(\varphi = \frac{{ \pi }}{{3}}\)

C. \(\varphi = \frac{{ 7 \pi }}{{12}}\)

D. \(\varphi = \frac{{ \pi }}{{12}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

30/08/2021 1 Lượt xem

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Cho các số phức \(z = {e^{a + 2i}},a \in R\) . Biểu diễn những số đó lên mặt phẳng phức ta được:

A. Nửa đường thẳng 

B. Đường thẳng

C. Đường tròn bán kính e

D. Đường tròn bán kính e2

Xem đáp án

30/08/2021 1 Lượt xem

Câu 4: Tính \(z = \frac{{1 + 3i}}{{2 - i}}\)

A. \(z = \frac{-1}{5} + \frac{{7i}}{5}\)

B. \(1+i\)

C. \(z = \frac{1}{5} - \frac{{7i}}{5}\)

D. \(1-i\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Tìm \(\sqrt[3]{i}\) trong trường số phức:

A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)

B. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)

C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)

D. Các câu kia đều sai

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Giải phương trình \((2 + i)z = {(1 - i)^2}\)  trong C

A. \(z = \frac{1}{5} - \frac{{7i}}{5}\)

B. \(z = \frac{1}{5} + \frac{{7i}}{5}\)

C. \(z = \frac{-2}{5} - \frac{{4i}}{5}\)

D. \(z = \frac{-2}{5}+ \frac{{4i}}{5}\)

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên