Câu hỏi: Tìm argument φ của số phức \(z = {\textstyle{{1 + i\sqrt 3 } \over {1 + i}}}\)
A. \(\varphi = \frac{{ - \pi }}{{12}}\)
B. \(\varphi = \frac{{ \pi }}{{3}}\)
C. \(\varphi = \frac{{ - \pi }}{{4}}\)
D. \(\varphi = \frac{{7 \pi }}{{12}}\)
Câu 1: Tập hợp tất cả các số phức \(\left| {z - 5} \right| = \left| {z + 5} \right|\) trong mặt phẳng phức là:
A. Đường y = x.
B. Trục 0y
C. Trục 0x
D. Các câu kia sai
30/08/2021 2 Lượt xem
Câu 2: Tìm argument φ của số phức \(z = \frac{{2 + i\sqrt {12} }}{{1 + i}}\)
A. \(\varphi = \frac{\pi }{4}\)
B. \(\varphi = \frac{\pi }{3}\)
C. \(\varphi = \frac{7\pi }{12}\)
D. \(\varphi = \frac{\pi }{12}\)
30/08/2021 2 Lượt xem
Câu 3: Tìm argument φ của số phức \(z = (1 + i\sqrt 3 )(1 - i)\)
A. \(\varphi = \frac{\pi }{{12}}\)
B. \(\varphi = \frac{\pi }{{3}}\)
C. \(\varphi = \frac{7\pi }{{12}}\)
D. \(\varphi = \frac{\pi }{{4}}\)
30/08/2021 3 Lượt xem
Câu 4: Tìm \(\sqrt[3]{i}\) trong trường số phức:
A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)
B. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)
C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)
D. Các câu kia đều sai
30/08/2021 1 Lượt xem
Câu 5: Tính \(z = \frac{{{{(1 - i)}^9}}}{{3 + i}}\)
A. \(\frac{{16}}{5} - \frac{{32i}}{5}\)
B. \(\frac{{8}}{5} - \frac{{32i}}{5}\)
C. \(\frac{{8}}{5} + \frac{{64i}}{5}\)
D. \(\frac{{16}}{5} + \frac{{32i}}{5}\)
30/08/2021 1 Lượt xem
Câu 6: Tìm \(\sqrt i \) trong trường số phức:
A. \({z_1} = {e^{\frac{{ - i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
B. \({z_1} = {e^{\frac{{ 3i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
C. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
D. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 990
- 66
- 25
-
45 người đang thi
- 523
- 18
- 25
-
76 người đang thi
- 436
- 15
- 25
-
89 người đang thi
- 368
- 10
- 25
-
97 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận