Câu hỏi: Tập hợp tất cả các số phức \({e^2}(\cos \varphi + i\sin \varphi );0 \le \varphi \le \pi \) trong mặt phẳng phức là:

209 Lượt xem
30/08/2021
3.9 10 Đánh giá

A. Đường tròn

B. Đường thẳng

C. Nửa đường tròn

D. 3 câu kia đều sai

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Giải phương trình trong trường số phức \(\left( {1 + 2i} \right)z = 3 + i\)

A. \(\frac{1}{2} - \frac{i}{2}\)

B. \(−1 + i. \)

C. \(z = 1 − i\)

D. \(z = 1 + i\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Tìm argument φ của số phức \(z = {\textstyle{{1 + i\sqrt 3 } \over {1 + i}}}\)

A. \(\varphi = \frac{{ - \pi }}{{12}}\)

B. \(\varphi = \frac{{ \pi }}{{3}}\)

C. \(\varphi = \frac{{ - \pi }}{{4}}\)

D. \(\varphi = \frac{{7 \pi }}{{12}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Tìm argument φ của số phức \(z = \frac{{{{(1 + i\sqrt 3 )}^{10}}}}{{ - 1 + i}}\)

A. \(\varphi = \frac{{ - \pi }}{{12}}\)

B. \(\varphi = \frac{{ \pi }}{{3}}\)

C. \(\varphi = \frac{{ 7 \pi }}{{12}}\)

D. \(\varphi = \frac{{ \pi }}{{12}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 6: Giải phương trình \((2 + i)z = 1 - 3i\) trong C.

A. \(z = \frac{-1}{5} - \frac{{7i}}{5}\)

B. \(z = \frac{1}{5} +\frac{{7i}}{5}\)

C. \(z = \frac{-1}{5} + \frac{{7i}}{5}\)

D. \(z = \frac{1}{5} - \frac{{7i}}{5}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên