Câu hỏi: Cho số phức z có module bằng 5. Tìm module của số phức \(w = \frac{{z.{i^{2006}}}}{{\overline z }}\)

172 Lượt xem
30/08/2021
3.3 10 Đánh giá

A. 1

B. 10030

C. 2010

D. 5

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho \(z = \frac{{{{(1 + i\sqrt 3 )}^5}}}{{4 - 3i}}\) . Tìm module của z.

A. \(\frac{{16}}{5}\)

B. \(\frac{{32}}{5}\)

C. \(\frac{{32}}{25}\)

D. Ba câu kia sai

Xem đáp án

30/08/2021 1 Lượt xem

Câu 2: Tìm \(\sqrt { - 9} \) trong trường số phức

A. z1 = −3; z2 = 3i.

B. z1 = 3i

C. z1 = 3i; z2 = −3i.

D. Các câu kia sai

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Tìm \(\sqrt[3]{i}\) trong trường số phức:

A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)

B. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)

C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)

D. Các câu kia đều sai

Xem đáp án

30/08/2021 1 Lượt xem

Câu 4: Biểu diễn các số phức dạng \(z = {e^{2 + iy}},y \in R\) lên mặt phẳng phức là:

A. Đường tròn bán kính 2

B. Đường tròn bán kính e2

C. Đường thẳng \(y = {e^2}x\)

D. Đường thẳng x = 2 + y

Xem đáp án

30/08/2021 2 Lượt xem

Câu 6: Tìm argument φ của số phức \(z = \frac{{{{(1 + i\sqrt 3 )}^{10}}}}{{ - 1 + i}}\)

A. \(\varphi = \frac{{ - \pi }}{{12}}\)

B. \(\varphi = \frac{{ \pi }}{{3}}\)

C. \(\varphi = \frac{{ 7 \pi }}{{12}}\)

D. \(\varphi = \frac{{ \pi }}{{12}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên