Câu hỏi: Cho số phức z có module bằng 5. Tìm module của số phức \(w = \frac{{z.{i^{2006}}}}{{\overline z }}\)
A. 1
B. 10030
C. 2010
D. 5
Câu 1: Tập hợp tất cả các số phức \(\left| {z + 4i} \right| = \left| {z - 4} \right|\) trong mặt phẳng phức là:
A. Trục 0y
B. Đường thẳng y = 4x.
C. Đường thẳng x + y = 0
D. Đường tròn
30/08/2021 1 Lượt xem
Câu 2: Tập hợp tất cả các số phức \(\left| {z + 2 - i} \right| + \left| {z - 3 + 2i} \right| = 1\) trong mặt phẳng phức là:
A. Ellipse
B. Các câu kia sai
C. Đường thẳng
D. Đường tròn
30/08/2021 2 Lượt xem
Câu 3: Tập hợp tất cả các số phức \(\left| {z - 5} \right| = \left| {z + 5} \right|\) trong mặt phẳng phức là:
A. Đường y = x.
B. Trục 0y
C. Trục 0x
D. Các câu kia sai
30/08/2021 2 Lượt xem
Câu 4: Tìm \(\sqrt[3]{i}\) trong trường số phức:
A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)
B. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)
C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)
D. Các câu kia đều sai
30/08/2021 1 Lượt xem
Câu 5: Tìm argument φ của số phức \(z = {\textstyle{{1 + i\sqrt 3 } \over {1 + i}}}\)
A. \(\varphi = \frac{{ - \pi }}{{12}}\)
B. \(\varphi = \frac{{ \pi }}{{3}}\)
C. \(\varphi = \frac{{ - \pi }}{{4}}\)
D. \(\varphi = \frac{{7 \pi }}{{12}}\)
30/08/2021 2 Lượt xem
Câu 6: Tính \(z = \frac{{1 + 3i}}{{2 - i}}\)
A. \(z = \frac{-1}{5} + \frac{{7i}}{5}\)
B. \(1+i\)
C. \(z = \frac{1}{5} - \frac{{7i}}{5}\)
D. \(1-i\)
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
48 người đang thi
- 570
- 18
- 25
-
80 người đang thi
- 479
- 15
- 25
-
55 người đang thi
- 408
- 10
- 25
-
36 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận