Câu hỏi: Cho số phức z có module bằng 5. Tìm module của số phức \(w = \frac{{z.{i^{2006}}}}{{\overline z }}\)
A. 1
B. 10030
C. 2010
D. 5
Câu 1: Cho \(z = \frac{{{{(1 + i\sqrt 3 )}^5}}}{{4 - 3i}}\) . Tìm module của z.
A. \(\frac{{16}}{5}\)
B. \(\frac{{32}}{5}\)
C. \(\frac{{32}}{25}\)
D. Ba câu kia sai
30/08/2021 1 Lượt xem
Câu 2: Tìm \(\sqrt { - 9} \) trong trường số phức
A. z1 = −3; z2 = 3i.
B. z1 = 3i
C. z1 = 3i; z2 = −3i.
D. Các câu kia sai
30/08/2021 1 Lượt xem
Câu 3: Tìm \(\sqrt[3]{i}\) trong trường số phức:
A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)
B. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)
C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)
D. Các câu kia đều sai
30/08/2021 1 Lượt xem
Câu 4: Biểu diễn các số phức dạng \(z = {e^{2 + iy}},y \in R\) lên mặt phẳng phức là:
A. Đường tròn bán kính 2
B. Đường tròn bán kính e2
C. Đường thẳng \(y = {e^2}x\)
D. Đường thẳng x = 2 + y
30/08/2021 2 Lượt xem
Câu 5: Tập hợp tất cả các số phức \(\left| {z + 2 - i} \right| + \left| {z - 3 + 2i} \right| = 1\) trong mặt phẳng phức là:
A. Ellipse
B. Các câu kia sai
C. Đường thẳng
D. Đường tròn
30/08/2021 2 Lượt xem
Câu 6: Tìm argument φ của số phức \(z = \frac{{{{(1 + i\sqrt 3 )}^{10}}}}{{ - 1 + i}}\)
A. \(\varphi = \frac{{ - \pi }}{{12}}\)
B. \(\varphi = \frac{{ \pi }}{{3}}\)
C. \(\varphi = \frac{{ 7 \pi }}{{12}}\)
D. \(\varphi = \frac{{ \pi }}{{12}}\)
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 990
- 66
- 25
-
54 người đang thi
- 523
- 18
- 25
-
11 người đang thi
- 436
- 15
- 25
-
19 người đang thi
- 368
- 10
- 25
-
62 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận