Câu hỏi: Tìm số nguyên dương n nhỏ nhất để \({( - 1 + i\sqrt 3 )^n}\)
A. n = 1
B. Không tồn tại n
C. n = 3
D. n = 6
Câu 1: Tập hợp tất cả các số phức \(\left| {z + 2 - i} \right| + \left| {z - 3 + 2i} \right| = 1\) trong mặt phẳng phức là:
A. Ellipse
B. Các câu kia sai
C. Đường thẳng
D. Đường tròn
30/08/2021 2 Lượt xem
Câu 2: Tìm \(\sqrt i \) trong trường số phức:
A. \({z_1} = {e^{\frac{{ - i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
B. \({z_1} = {e^{\frac{{ 3i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
C. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
D. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)
30/08/2021 2 Lượt xem
Câu 3: Tìm argument φ của số phức \(z = \frac{{2 + i\sqrt {12} }}{{1 + i}}\)
A. \(\varphi = \frac{\pi }{4}\)
B. \(\varphi = \frac{\pi }{3}\)
C. \(\varphi = \frac{7\pi }{12}\)
D. \(\varphi = \frac{\pi }{12}\)
30/08/2021 2 Lượt xem
Câu 4: Tính \(z = \frac{{1 + {i^{2007}}}}{{2 + i}}\)
A. \(\frac{2}{5} + \frac{{ - i}}{5}\)
B. \(\frac{-2}{5} + \frac{{ i}}{5}\)
C. \(\frac{1}{5} - \frac{{ i}}{5}\)
D. \(\frac{1}{5}- \frac{{3}}{5}\)
30/08/2021 1 Lượt xem
Câu 5: Cho \(z = \frac{{{{(1 + i\sqrt 3 )}^5}}}{{4 - 3i}}\) . Tìm module của z.
A. \(\frac{{16}}{5}\)
B. \(\frac{{32}}{5}\)
C. \(\frac{{32}}{25}\)
D. Ba câu kia sai
30/08/2021 1 Lượt xem
Câu 6: Tìm argument φ của số phức \(z = \frac{{{{(1 + i\sqrt 3 )}^{10}}}}{{ - 1 + i}}\)
A. \(\varphi = \frac{{ - \pi }}{{12}}\)
B. \(\varphi = \frac{{ \pi }}{{3}}\)
C. \(\varphi = \frac{{ 7 \pi }}{{12}}\)
D. \(\varphi = \frac{{ \pi }}{{12}}\)
30/08/2021 2 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
73 người đang thi
- 583
- 18
- 25
-
32 người đang thi
- 494
- 15
- 25
-
66 người đang thi
- 419
- 10
- 25
-
78 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận