Câu hỏi: Tìm \(\sqrt i \) trong trường số phức:

131 Lượt xem
30/08/2021
3.2 10 Đánh giá

A. \({z_1} = {e^{\frac{{ - i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)

B. \({z_1} = {e^{\frac{{ 3i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)

C. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)

D. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm argument φ của số phức \(z = \frac{{ - 1 + i\sqrt 3 }}{{{{(1 + i)}^{15}}}}\)

A. \(\varphi = \frac{\pi }{3}\)

B. \(\varphi = \frac{7\pi }{12}\)

C. \(\varphi = \frac{11\pi }{12}\)

D. \(\varphi = \frac{3\pi }{4}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Tìm argument φ của số phức \(z = (1 + i\sqrt 3 )(1 - i)\)

A. \(\varphi = \frac{\pi }{{12}}\)

B. \(\varphi = \frac{\pi }{{3}}\)

C. \(\varphi = \frac{7\pi }{{12}}\)

D. \(\varphi = \frac{\pi }{{4}}\)

Xem đáp án

30/08/2021 3 Lượt xem

Câu 4: Cho \(z = \frac{{{{(1 + i\sqrt 3 )}^5}}}{{4 - 3i}}\) . Tìm module của z.

A. \(\frac{{16}}{5}\)

B. \(\frac{{32}}{5}\)

C. \(\frac{{32}}{25}\)

D. Ba câu kia sai

Xem đáp án

30/08/2021 1 Lượt xem

Câu 5: Tìm \(\sqrt[3]{i}\) trong trường số phức:

A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)

B. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)

C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)

D. Các câu kia đều sai

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Tìm argument φ của số phức \(z = \frac{{2 + i\sqrt {12} }}{{1 + i}}\)

A. \(\varphi = \frac{\pi }{4}\)

B. \(\varphi = \frac{\pi }{3}\)

C. \(\varphi = \frac{7\pi }{12}\)

D. \(\varphi = \frac{\pi }{12}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên