Câu hỏi: Tính \(z = \frac{{{{(1 - i)}^9}}}{{3 + i}}\)

156 Lượt xem
30/08/2021
3.6 7 Đánh giá

A. \(\frac{{16}}{5} - \frac{{32i}}{5}\)

B. \(\frac{{8}}{5} - \frac{{32i}}{5}\)

C. \(\frac{{8}}{5} + \frac{{64i}}{5}\)

D. \(\frac{{16}}{5} + \frac{{32i}}{5}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tính \(z = \frac{{1 + {i^{2007}}}}{{2 + i}}\)

A. \(\frac{2}{5} + \frac{{ - i}}{5}\)

B. \(\frac{-2}{5} + \frac{{ i}}{5}\)

C. \(\frac{1}{5} - \frac{{ i}}{5}\)

D. \(\frac{1}{5}- \frac{{3}}{5}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 2: Tập hợp tất cả các số phức \(\left| {z + 4i} \right| = \left| {z - 4} \right|\) trong mặt phẳng phức là:

A. Trục 0y

B. Đường thẳng y = 4x.

C. Đường thẳng x + y = 0

D. Đường tròn

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Tìm argument φ của số phức \(z = \frac{{ - 1 + i\sqrt 3 }}{{{{(1 + i)}^{15}}}}\)

A. \(\varphi = \frac{\pi }{3}\)

B. \(\varphi = \frac{7\pi }{12}\)

C. \(\varphi = \frac{11\pi }{12}\)

D. \(\varphi = \frac{3\pi }{4}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 4: Tìm \(\sqrt i \) trong trường số phức:

A. \({z_1} = {e^{\frac{{ - i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)

B. \({z_1} = {e^{\frac{{ 3i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)

C. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)

D. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Tìm argument φ của số phức \(z = \frac{{2 + i\sqrt {12} }}{{1 + i}}\)

A. \(\varphi = \frac{\pi }{4}\)

B. \(\varphi = \frac{\pi }{3}\)

C. \(\varphi = \frac{7\pi }{12}\)

D. \(\varphi = \frac{\pi }{12}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên