Câu hỏi: Tìm argument φ của số phức \(z = \frac{{ - 1 + i\sqrt 3 }}{{{{(1 + i)}^{15}}}}\)
A. \(\varphi = \frac{\pi }{3}\)
B. \(\varphi = \frac{7\pi }{12}\)
C. \(\varphi = \frac{11\pi }{12}\)
D. \(\varphi = \frac{3\pi }{4}\)
Câu 1: Giải phương trình \((2 + i)z = {(1 - i)^2}\) trong C
A. \(z = \frac{1}{5} - \frac{{7i}}{5}\)
B. \(z = \frac{1}{5} + \frac{{7i}}{5}\)
C. \(z = \frac{-2}{5} - \frac{{4i}}{5}\)
D. \(z = \frac{-2}{5}+ \frac{{4i}}{5}\)
30/08/2021 1 Lượt xem
Câu 2: Tập hợp tất cả các số phức \(\left| {z + 2 - i} \right| + \left| {z - 3 + 2i} \right| = 1\) trong mặt phẳng phức là:
A. Ellipse
B. Các câu kia sai
C. Đường thẳng
D. Đường tròn
30/08/2021 2 Lượt xem
Câu 3: Tìm \(\sqrt i \) trong trường số phức:
A. \({z_1} = {e^{\frac{{ - i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
B. \({z_1} = {e^{\frac{{ 3i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
C. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
D. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)
30/08/2021 2 Lượt xem
Câu 4: Tìm số nguyên dương n nhỏ nhất để \({( - 1 + i\sqrt 3 )^n}\)
A. n = 1
B. Không tồn tại n
C. n = 3
D. n = 6
30/08/2021 1 Lượt xem
Câu 5: Giải phương trình trong trường số phức \(\left( {1 + 2i} \right)z = 3 + i\)
A. \(\frac{1}{2} - \frac{i}{2}\)
B. \(−1 + i. \)
C. \(z = 1 − i\)
D. \(z = 1 + i\)
30/08/2021 2 Lượt xem
Câu 6: Tập hợp tất cả các số phức \(\left| {z - 5} \right| = \left| {z + 5} \right|\) trong mặt phẳng phức là:
A. Đường y = x.
B. Trục 0y
C. Trục 0x
D. Các câu kia sai
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 8
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
23 người đang thi
- 570
- 18
- 25
-
56 người đang thi
- 479
- 15
- 25
-
79 người đang thi
- 408
- 10
- 25
-
76 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận