Câu hỏi: Tìm giới hạn \(\mathop {\lim }\limits_{(x,y) \to (0,0)} \frac{1}{2}({e^{xy}} + {e^{ - xy}})\)  . Tính \(\frac{{\partial z}}{{\partial y}}(1;1)\)

109 Lượt xem
30/08/2021
3.8 8 Đánh giá

A. \(- \frac{1}{2}\)

B. \(\frac{1}{2}\)

C. 0

D. không tồn tại 

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm vi phân dz của hàm: \(z = {x^2} - 2xy + \sin (xy)\)

A. \(dz = (2x - 2y + y\cos (xy))dx\)

B. \(dz = ( - 2x + x\cos (xy))dy\)

C. \(dz = ( - 2x - 2y + y\cos (xy))dx + ( - 2x + x\cos (xy)dy)\)

D. \(dz = (2x - 2y + \cos (xy))dx + ( - 2x + \cos (xy))dy\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Biết \(f(x + y,x - y) = xy\)  . Tìm \(f(x,y)\)

A. \(f(x,y) = \frac{{{x^2} - {y^2}}}{4}\)

B. \(f(x,y) = \frac{{{x^2} + {y^2}}}{4}\)

C. \(f(x,y) = \frac{{ - {x^2} + {y^2}}}{4}\)

D. \(f(x,y) = \frac{{{x^2} - {y^2}}}{4}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp C3 - Phần 4
Thông tin thêm
  • 0 Lượt thi
  • 45 Phút
  • 20 Câu hỏi
  • Sinh viên