Câu hỏi: Cho hàm số \(z = {e^{\frac{x}{y}}}\)  . Tính \(\frac{{{\partial ^2}z}}{{\partial {x^2}}}(t,t)\)  với \(t \ne 0\)

102 Lượt xem
30/08/2021
3.3 6 Đánh giá

A. et2

B. t2

C. 1

D. et-2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Biết \(f(x + y,x - y) = xy\)  . Tìm \(f(x,y)\)

A. \(f(x,y) = \frac{{{x^2} - {y^2}}}{4}\)

B. \(f(x,y) = \frac{{{x^2} + {y^2}}}{4}\)

C. \(f(x,y) = \frac{{ - {x^2} + {y^2}}}{4}\)

D. \(f(x,y) = \frac{{{x^2} - {y^2}}}{4}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 2: Khảo sát cực trị của \(z = 1 - \sqrt {{{(x - 1)}^2} + {y^2}} \)  tại (1,0):

A. Hàm số không có cực trị 

B. Hàm số không có cực đại 

C. Hàm số đạt cực tiểu

D. Hàm số đạt cực đại 

Xem đáp án

30/08/2021 0 Lượt xem

Câu 4: Cho chuỗi có số hạng tổng quát: \({u_n} = \frac{1}{{n(n + 1)}},n \ge 1\)  . Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\)  . Kết luận nào sau đây đúng?

A. \({S_n} = 1 - \frac{1}{{n + 1}})\)  và chuỗi hội tụ, có tổng s=1

B. Chuỗi phân kỳ

C. \({S_n} = \frac{1}{2}(1 - \frac{1}{{n + 1}})\)  và chuỗi hội tụ, có tổng \(s = \frac{1}{2}\)

D. \({S_n} = 1 + \frac{1}{{n + 1}}\) và chuỗi hội tụ, có tổng s=1

Xem đáp án

30/08/2021 0 Lượt xem

Xem đáp án

30/08/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp C3 - Phần 4
Thông tin thêm
  • 0 Lượt thi
  • 45 Phút
  • 20 Câu hỏi
  • Sinh viên