Câu hỏi: Cho hàm số \(z = xy + x + y\)  . Tính \({d_z}(0,0)\)

130 Lượt xem
30/08/2021
3.8 6 Đánh giá

A. 2

B. dx+dy

C. 2(dx+dy)

D. 0

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Miền xác định của hàm số \(f(x,y) = \arcsin (3x - {y^2})\)  là:

A. \({D_f} = \left\{ {(x,y) \in {R^2}| - 1 \le 3x - {y^2} \le 1} \right\}\)

B. \({D_f} = R\)

C. \({D_f} = \left\{ {(x,y) \in {R^2}|0 \le 3x - {y^2} \le 1} \right\}\)

D. \({D_f} = {R^2}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 2: Biết \(f(x + y,x - y) = xy\)  . Tìm \(f(x,y)\)

A. \(f(x,y) = \frac{{{x^2} - {y^2}}}{4}\)

B. \(f(x,y) = \frac{{{x^2} + {y^2}}}{4}\)

C. \(f(x,y) = \frac{{ - {x^2} + {y^2}}}{4}\)

D. \(f(x,y) = \frac{{{x^2} - {y^2}}}{4}\)

Xem đáp án

30/08/2021 2 Lượt xem

Xem đáp án

30/08/2021 0 Lượt xem

Câu 5: Cho hàm số \(f(x,y) = \frac{{\sin (xy)}}{y}\)  . Tìm giá trị f(-1,0) để hàm số liên tục tại (-1,0):

A. f(-1,0)=0

B. \(f( - 1,0) = 1\)

C. Mọi giá trị f(-1,0) \(\in R\)  đều thỏa

D. \(f( - 1,0) = - 1\)

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp C3 - Phần 4
Thông tin thêm
  • 0 Lượt thi
  • 45 Phút
  • 20 Câu hỏi
  • Sinh viên