Câu hỏi: Khai triển Maclaurin của \(\sin (2{x^2})\)  đến \(x^6\)

234 Lượt xem
30/08/2021
3.1 7 Đánh giá

A. \(- 2{x^2} - \frac{{4{x^6}}}{3} + o({x^8})\)

B. \(2{x^2} + \frac{{4{x^6}}}{3} + o({x^8})\)

C. \(2{x^2} - \frac{{4{x^6}}}{3} + o({x^8})c\)

D. \(- 2{x^2} + \frac{{4{x^6}}}{3} + o({x^8})\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Tính tích phân \(I = \int {\frac{{2dx}}{{\sqrt {{x^2} + 4x + 5} }}}\)

A. \(2\ln \left| {x + 2 - \sqrt {{x^2} + 4x + 5} } \right| + C\)

B. \(2\ln \left| {x + 2 + \sqrt {{x^2} + 4x + 5} } \right| + C\)

C. \(\ln \left| {x + 2 + \sqrt {{x^2} + 4x + 5} } \right| + C\)

D. \(\frac{1}{2}\ln \left| {x + 2 + \sqrt {{x^2} + 4x + 5} } \right| + C\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Cho chuỗi \({\sum\limits_{n = 1}^\infty {\left( {\frac{{3n + 1}}{{{3^n}}}} \right)} ^n}\) . Chọn phát biểu đúng?

A. Chuỗi hội tụ

B. Chuỗi phân kỳ

C. Chuỗi đan dấu

D. Chuỗi có dấu bất kỳ

Xem đáp án

30/08/2021 1 Lượt xem

Câu 4: Cho chuỗi số \(\sum\limits_{n = 1}^\infty {{u_n}} \)  và tổng riêng \(\sum\limits_{i = 1}^n {{u_n}}\) . Chọn phát biểu đúng

A. Nếu dãy tổng \(\sum\limits_{i = 1}^n {{u_n}}\) riêng hội tụ ta nói chuỗi \(\sum\limits_{n = 1}^\infty {{u_n}}\)  hội tụ

B. Nếu \({u_n} \to 0\) thì \(\sum\limits_{n = 1}^\infty {{u_n}}\) hội tụ

C. Nếu \(\sum\limits_{n = 1}^\infty {{u_n}}\) phân kỳ thì \({u_n} \to 0\)

D. Nếu \(\sum\limits_{n = 1}^\infty {{u_n}}\) hội tụ thì \(\sum\limits_{n = 1}^\infty {\left| {{u_n}} \right|} \) hội tụ

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Tìm điểm gián đoạn của hàm số \(f(x) = {3^{x/(1 - {x^2})}}\) và cho biết nó thuộc loại nào?

A. x = 1, x = -1, loại 2

B. x = 1, x = -1, loại 1

C. x = 1, x = -1, khử được

D. \(x = \pi\)  , điểm nhảy

Xem đáp án

30/08/2021 2 Lượt xem

Câu 6: Cho chuỗi \(\sum\limits_{n = 1}^\infty {\frac{{5n!}}{{{n^n}}}}\) . Chọn phát biểu đúng?

A. Chuỗi phân kỳ

B. Chuỗi hội tụ

C. Chuỗi đan dấu

D. Chuỗi có dấu bất kỳ

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 4
Thông tin thêm
  • 12 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên