Câu hỏi: Cho chuỗi \({\sum\limits_{n = 1}^\infty {\left( {\frac{{3n + 1}}{{{3^n}}}} \right)} ^n}\) . Chọn phát biểu đúng?

209 Lượt xem
30/08/2021
3.0 7 Đánh giá

A. Chuỗi hội tụ

B. Chuỗi phân kỳ

C. Chuỗi đan dấu

D. Chuỗi có dấu bất kỳ

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Khai triển Maclaurin của cosx đến x4

A. \(1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} + o({x^5})\)

B. \(1 + \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{24}} + o({x^5})\)

C. \(1 - \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{24}} + o({x^5})\)

D. \(1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} + o({x^5})\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 2: Khai triển Maclaurin của sin x đến x4

A. \(x - \frac{{{x^3}}}{6} + o({x^4})\)

B. \(x+ \frac{{{x^3}}}{6} + o({x^4})\)

C. \(x - \frac{{{x^3}}}{6} + \frac{{{x^5}}}{{120}} + o({x^4})\)

D. \(x + \frac{{{x^3}}}{6} - \frac{{{x^5}}}{{120}} + o({x^4})\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Khai triển Maclaurin của \(\sin (2{x^2})\)  đến \(x^6\)

A. \(- 2{x^2} - \frac{{4{x^6}}}{3} + o({x^8})\)

B. \(2{x^2} + \frac{{4{x^6}}}{3} + o({x^8})\)

C. \(2{x^2} - \frac{{4{x^6}}}{3} + o({x^8})c\)

D. \(- 2{x^2} + \frac{{4{x^6}}}{3} + o({x^8})\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 6: Xét sự hội tụ của tích phân suy rộng \(\int\limits_0^9 {\frac{{dx}}{{\sqrt x - 3}}}\)

A. hội tụ

B. phân kỳ

C. bán hội tụ

D. hội tụ tuyệt đối

Xem đáp án

30/08/2021 4 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 4
Thông tin thêm
  • 12 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên