Câu hỏi: Tích phân suy rộng \(\int\limits_a^b {\frac{{dx}}{{{{(b - x)}^\alpha }}}} (b > a,\,\alpha > 0)\) phân kỳ khi:

203 Lượt xem
30/08/2021
3.6 5 Đánh giá

A. \(\alpha \ge 1\)

B. \(\alpha < 1\)

C. \(\alpha \ne 1\)

D. \(\forall \alpha \in R\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho chuỗi \(\sum\limits_{n = 1}^\infty {\frac{{5n!}}{{{n^n}}}}\) . Chọn phát biểu đúng?

A. Chuỗi phân kỳ

B. Chuỗi hội tụ

C. Chuỗi đan dấu

D. Chuỗi có dấu bất kỳ

Xem đáp án

30/08/2021 2 Lượt xem

Câu 2: Cho chuỗi \(\sum\limits_{n = 1}^\infty {\frac{1}{{\sqrt {2n({n^2} + 7)} }}}\)  . Chọn phát biểu đúng?

A. Chuỗi phân kỳ

B. Chuỗi hội tụ

C. Chuỗi đan dấu

D. Chuỗi có dấu bất kỳ

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Khai triển Maclaurin của cosx đến x4

A. \(1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} + o({x^5})\)

B. \(1 + \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{24}} + o({x^5})\)

C. \(1 - \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{24}} + o({x^5})\)

D. \(1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} + o({x^5})\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 4: Khai triển Maclaurin của sin x đến x4

A. \(x - \frac{{{x^3}}}{6} + o({x^4})\)

B. \(x+ \frac{{{x^3}}}{6} + o({x^4})\)

C. \(x - \frac{{{x^3}}}{6} + \frac{{{x^5}}}{{120}} + o({x^4})\)

D. \(x + \frac{{{x^3}}}{6} - \frac{{{x^5}}}{{120}} + o({x^4})\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Khai triển Maclaurin của \(\sin (2{x^2})\)  đến \(x^6\)

A. \(- 2{x^2} - \frac{{4{x^6}}}{3} + o({x^8})\)

B. \(2{x^2} + \frac{{4{x^6}}}{3} + o({x^8})\)

C. \(2{x^2} - \frac{{4{x^6}}}{3} + o({x^8})c\)

D. \(- 2{x^2} + \frac{{4{x^6}}}{3} + o({x^8})\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 6: Định nghĩa nào sau đây đúng về tích phân suy rộng?

A. \(\int\limits_{ - \infty }^b {f(x)dx = \mathop {\lim }\limits_{a \to - \infty } } \int\limits_a^b {f(x)dx} \)

B. \(\int\limits_a^{ + \infty } {f(x)dx = \mathop {\lim }\limits_{a \to + \infty } } \int\limits_a^{ - \infty } {f(x)dx} \)

C. \(\int\limits_{ - \infty }^b {f(x)dx = \mathop {\lim }\limits_{a \to {0^ - }} } \int\limits_{a + \varepsilon }^b {f(x)dx} \)

D. \(\int\limits_a^{ + \infty } {f(x)dx = \mathop {\lim }\limits_{\varepsilon \to 0} } \int\limits_a^{b + \varepsilon } {f(x)dx} \)

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 4
Thông tin thêm
  • 12 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên