Câu hỏi: Tìm điểm gián đoạn của hàm số \(f(x) = {3^{x/(1 - {x^2})}}\) và cho biết nó thuộc loại nào?

191 Lượt xem
30/08/2021
4.0 8 Đánh giá

A. x = 1, x = -1, loại 2

B. x = 1, x = -1, loại 1

C. x = 1, x = -1, khử được

D. \(x = \pi\)  , điểm nhảy

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Định nghĩa nào sau đây đúng về tích phân suy rộng?

A. \(\int\limits_{ - \infty }^b {f(x)dx = \mathop {\lim }\limits_{a \to - \infty } } \int\limits_a^b {f(x)dx} \)

B. \(\int\limits_a^{ + \infty } {f(x)dx = \mathop {\lim }\limits_{a \to + \infty } } \int\limits_a^{ - \infty } {f(x)dx} \)

C. \(\int\limits_{ - \infty }^b {f(x)dx = \mathop {\lim }\limits_{a \to {0^ - }} } \int\limits_{a + \varepsilon }^b {f(x)dx} \)

D. \(\int\limits_a^{ + \infty } {f(x)dx = \mathop {\lim }\limits_{\varepsilon \to 0} } \int\limits_a^{b + \varepsilon } {f(x)dx} \)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Cho hai chuỗi \(\sum\limits_{n = 1}^{ + \infty } {\frac{{n + 5}}{{n({n^2} + 1)}}}\)  (1) và \(\sum\limits_{n = 1}^{ + \infty } {\frac{{\sqrt {n + 1} }}{{{n^4} + 4n}}}\)  (2). Kết luận nào dưới đây đúng?

A. Chuỗi (1) và (2) hội tụ

B. Chuỗi (1) hội tụ, chuỗi (2) phân kỳ

C. Chuỗi (1) và (2) phân kỳ

D. Chuỗi (1) phân kỳ, chuỗi (2) hội tụ

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Cho chuỗi \(\sum\limits_{n = 1}^\infty {\frac{1}{{\sqrt {2n({n^2} + 7)} }}}\)  . Chọn phát biểu đúng?

A. Chuỗi phân kỳ

B. Chuỗi hội tụ

C. Chuỗi đan dấu

D. Chuỗi có dấu bất kỳ

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 4
Thông tin thêm
  • 12 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên