Câu hỏi: Bán kính hội tụ của chuỗi \(\sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{{n^2}}}}\)  là:

234 Lượt xem
30/08/2021
3.8 8 Đánh giá

A. r = 2

B. r = 1

C. r = 3

D. r = 4

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho hai chuỗi \(\sum\limits_{n = 1}^{ + \infty } {\frac{{n + 5}}{{n({n^2} + 1)}}}\)  (1) và \(\sum\limits_{n = 1}^{ + \infty } {\frac{{\sqrt {n + 1} }}{{{n^4} + 4n}}}\)  (2). Kết luận nào dưới đây đúng?

A. Chuỗi (1) và (2) hội tụ

B. Chuỗi (1) hội tụ, chuỗi (2) phân kỳ

C. Chuỗi (1) và (2) phân kỳ

D. Chuỗi (1) phân kỳ, chuỗi (2) hội tụ

Xem đáp án

30/08/2021 1 Lượt xem

Câu 2: Tính tích phân \(I = \int {\frac{{2dx}}{{\sqrt {{x^2} + 4x + 5} }}}\)

A. \(2\ln \left| {x + 2 - \sqrt {{x^2} + 4x + 5} } \right| + C\)

B. \(2\ln \left| {x + 2 + \sqrt {{x^2} + 4x + 5} } \right| + C\)

C. \(\ln \left| {x + 2 + \sqrt {{x^2} + 4x + 5} } \right| + C\)

D. \(\frac{1}{2}\ln \left| {x + 2 + \sqrt {{x^2} + 4x + 5} } \right| + C\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Tìm điểm gián đoạn của hàm số \(f(x) = {3^{x/(1 - {x^2})}}\) và cho biết nó thuộc loại nào?

A. x = 1, x = -1, loại 2

B. x = 1, x = -1, loại 1

C. x = 1, x = -1, khử được

D. \(x = \pi\)  , điểm nhảy

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Xét sự hội tụ của tích phân suy rộng \(\int\limits_0^4 {\frac{{dx}}{{x - 3}}}\)

A. hội tụ

B. phân kỳ

C. bán hội tụ

D. hội tụ tuyệt đối

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Cho chuỗi số \(\sum\limits_{n = 1}^\infty {{u_n}} \)  và tổng riêng \(\sum\limits_{i = 1}^n {{u_n}}\) . Chọn phát biểu đúng

A. Nếu dãy tổng \(\sum\limits_{i = 1}^n {{u_n}}\) riêng hội tụ ta nói chuỗi \(\sum\limits_{n = 1}^\infty {{u_n}}\)  hội tụ

B. Nếu \({u_n} \to 0\) thì \(\sum\limits_{n = 1}^\infty {{u_n}}\) hội tụ

C. Nếu \(\sum\limits_{n = 1}^\infty {{u_n}}\) phân kỳ thì \({u_n} \to 0\)

D. Nếu \(\sum\limits_{n = 1}^\infty {{u_n}}\) hội tụ thì \(\sum\limits_{n = 1}^\infty {\left| {{u_n}} \right|} \) hội tụ

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 4
Thông tin thêm
  • 12 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên