Câu hỏi: Khai triển Maclaurin của cosx đến x4

204 Lượt xem
30/08/2021
3.4 10 Đánh giá

A. \(1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} + o({x^5})\)

B. \(1 + \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{24}} + o({x^5})\)

C. \(1 - \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{24}} + o({x^5})\)

D. \(1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} + o({x^5})\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho chuỗi số \(\sum\limits_{n = 1}^\infty {{u_n}} \)  và tổng riêng \(\sum\limits_{i = 1}^n {{u_n}}\) . Chọn phát biểu đúng

A. Nếu dãy tổng \(\sum\limits_{i = 1}^n {{u_n}}\) riêng hội tụ ta nói chuỗi \(\sum\limits_{n = 1}^\infty {{u_n}}\)  hội tụ

B. Nếu \({u_n} \to 0\) thì \(\sum\limits_{n = 1}^\infty {{u_n}}\) hội tụ

C. Nếu \(\sum\limits_{n = 1}^\infty {{u_n}}\) phân kỳ thì \({u_n} \to 0\)

D. Nếu \(\sum\limits_{n = 1}^\infty {{u_n}}\) hội tụ thì \(\sum\limits_{n = 1}^\infty {\left| {{u_n}} \right|} \) hội tụ

Xem đáp án

30/08/2021 2 Lượt xem

Câu 4: Cho chuỗi \(\sum\limits_{n = 1}^\infty {\frac{1}{{\sqrt {2n({n^2} + 7)} }}}\)  . Chọn phát biểu đúng?

A. Chuỗi phân kỳ

B. Chuỗi hội tụ

C. Chuỗi đan dấu

D. Chuỗi có dấu bất kỳ

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Khai triển Maclaurin của sin x đến x4

A. \(x - \frac{{{x^3}}}{6} + o({x^4})\)

B. \(x+ \frac{{{x^3}}}{6} + o({x^4})\)

C. \(x - \frac{{{x^3}}}{6} + \frac{{{x^5}}}{{120}} + o({x^4})\)

D. \(x + \frac{{{x^3}}}{6} - \frac{{{x^5}}}{{120}} + o({x^4})\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp A1 - Phần 4
Thông tin thêm
  • 12 Lượt thi
  • 30 Phút
  • 25 Câu hỏi
  • Sinh viên