Câu hỏi: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(u = {x^2} - 2x + 3\) , trục Ox và đường thẳng x = -1 , x =2 bằng :
A. \(\dfrac{1}{3}\)
B. 17
C. 7
D. 9
Câu 1: Cho \(\left| {\overrightarrow a } \right| = 2;\,\left| {\overrightarrow b } \right| = 5,\) góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng \(\frac{{2\pi }}{3}\) , \(\overrightarrow u = k\overrightarrow a - \overrightarrow b ;\,\overrightarrow v = \overrightarrow a + 2\overrightarrow b .\) Để \(\overrightarrow u \) vuông góc với \(\overrightarrow v \) thì k bằng
A. \( - \dfrac{6}{{45}}.\)
B. \(\dfrac{{45}}{6}.\)
C. \(\dfrac{6}{{45}}.\)
D. \( - \dfrac{{45}}{6}.\)
18/11/2021 2 Lượt xem
Câu 2: Tính nguyên hàm \(\int {{x^2}\sqrt {{x^3} + 5} } \,dx\) ta được kết quả là :
A. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
B. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
C. \(2{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
D. \(2{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
18/11/2021 1 Lượt xem
Câu 3: Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)
B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).
C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).
D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).
18/11/2021 1 Lượt xem
18/11/2021 1 Lượt xem
Câu 5: Ba đỉnh của một hình bình hành có tọa độ là\(\left( {1;1;1} \right),\,\left( {2;3;4} \right),\,\left( {7;7;5} \right)\). Diện tích của hình bình hành đó bằng
A. \(2\sqrt {83} \).
B. \(\sqrt {83} \).
C. 83
D. \(\dfrac{{\sqrt {83} }}{2}\).
18/11/2021 1 Lượt xem
Câu 6: Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:
A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).
B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).
C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).
D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)
18/11/2021 1 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 594
- 0
- 40
-
57 người đang thi
- 622
- 13
- 40
-
72 người đang thi
- 553
- 3
- 30
-
12 người đang thi
- 531
- 3
- 30
-
32 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận