Câu hỏi: Cho \(\overrightarrow u  = \left( {2; - 1;1} \right),\overrightarrow v  = \left( {m;3; - 1} \right),\overrightarrow {\rm{w}}  = \left( {1;2;1} \right)\). Với giá trị nào của m thì ba vectơ trên đồng phẳng

272 Lượt xem
18/11/2021
3.4 12 Đánh giá

A. \(\dfrac{3}{8}\).

B. \( - \dfrac{3}{8}\).

C. \(\dfrac{8}{3}\).

D. \( - \dfrac{8}{3}\).

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho vectơ  \(\overrightarrow a  = \left( {1;3;4} \right)\), tìm vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow a \)

A. \(\overrightarrow b  = \left( { - 2; - 6; - 8} \right).\)

B. \(\overrightarrow b  = \left( { - 2; - 6;8} \right).\)

C. \(\overrightarrow b  = \left( { - 2;6;8} \right).\) 

D. \(\overrightarrow b  = \left( {2; - 6; - 8} \right).\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 2: Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \) .

A. \(I = {e^{\dfrac{\pi }{2}}} + 2\)

B. \(I = {e^{\dfrac{\pi }{2}}} + 1\)

C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)

D. \(I = {e^{\dfrac{\pi }{2}}}\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 3: Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:

A. \(\cot x - 2\tan x + C\).

B. \( - \cot x + 2\tan x + C\).

C. \(\cot x + 2\tan x + C\).

D. \( - \cot x - 2\tan x + C\) 

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4: Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:

A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).   

B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).

C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).

D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x}  + C\) thì f(x) bằng

A. \({e^x} + 2\sin x\). 

B. \({e^x} + \sin 2x\).

C. \({e^x} + {\cos ^2}x\).        

D. \({e^x} - 2\sin x\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 6: Hàm số \(f(x) = x\sqrt {x + 1} \) có một nguyên hàm là F(x). Nếu F(0) = 2 thì F(3) bằng bao nhiêu ?

A. \(\dfrac{{146}}{{15}}\)

B. \(\dfrac{{116}}{{15}}\)  

C. \(\dfrac{{886}}{{105}}\)

D. \(\dfrac{{105}}{{886}}\).

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh