Câu hỏi: Cho hàm số \(z = f(x,y) = {e^{2x + 3y}}\)  . Chọn đáp án đúng?

119 Lượt xem
30/08/2021
3.1 7 Đánh giá

A. \(\mathop Z\nolimits_{{x^n}}^n = {5^n}{e^{2x + 3y}}\)

B. \(\mathop Z\nolimits_{{x^n}}^n = {2^n}{e^{2x + 3y}}\)

C. \(\mathop Z\nolimits_{{x^n}}^n = {3^n}{e^{2x + 3y}}\)

D. \(\mathop Z\nolimits_{{x^n}}^n = {e^{2x + 3y}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm vi phân dz của hàm: \(z = {x^2} - 2xy + \sin (xy)\)

A. \(dz = (2x - 2y + y\cos (xy))dx\)

B. \(dz = ( - 2x + x\cos (xy))dy\)

C. \(dz = ( - 2x - 2y + y\cos (xy))dx + ( - 2x + x\cos (xy)dy)\)

D. \(dz = (2x - 2y + \cos (xy))dx + ( - 2x + \cos (xy))dy\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 4: Khảo sát cực trị của \(z = 1 - \sqrt {{{(x - 1)}^2} + {y^2}} \)  tại (1,0):

A. Hàm số không có cực trị 

B. Hàm số không có cực đại 

C. Hàm số đạt cực tiểu

D. Hàm số đạt cực đại 

Xem đáp án

30/08/2021 0 Lượt xem

Câu 6: Miền xác định của hàm số \(f(x,y) = \arcsin (3x - {y^2})\)  là:

A. \({D_f} = \left\{ {(x,y) \in {R^2}| - 1 \le 3x - {y^2} \le 1} \right\}\)

B. \({D_f} = R\)

C. \({D_f} = \left\{ {(x,y) \in {R^2}|0 \le 3x - {y^2} \le 1} \right\}\)

D. \({D_f} = {R^2}\)

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp C3 - Phần 4
Thông tin thêm
  • 0 Lượt thi
  • 45 Phút
  • 20 Câu hỏi
  • Sinh viên