Câu hỏi:  Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:

264 Lượt xem
18/11/2021
4.0 10 Đánh giá

A. \( - {\sin ^4}x + C\).

B. \(\dfrac{1}{4}{\sin ^4}x + C\).

C. \( - \dfrac{1}{4}{\sin ^4}x + C\).

D. \({\sin ^4}x + C\).

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm họ các nguyên hàm của hàm số f(x) = 2sinx.

A. \(\int {2\sin x\,dx = {{\sin }^2}x} + C\)

B. \(\int {2\sin x\,dx = 2\cos x} + C\)

C. \(\int {2\sin x\,dx = \sin 2x} + C\)

D. \(\int {2\sin x\,dx = - 2\cos x} + C\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 2: Hàm số nào sau đây không phải là một nguyên hàm của: \(f(x) = {2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}\) ?

A. \(2\left( {{2^{\sqrt x }} - 1} \right) + C\).

B. \({2^{\sqrt x }} + C\).

C. \({2^{\sqrt x  + 1}}\). 

D. \(2\left( {{2^{\sqrt x }} + 1} \right) + C\).

Xem đáp án

18/11/2021 4 Lượt xem

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:

A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).   

B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).

C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).

D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh