Trắc Nghiệm Hay giới thiệu đến các bạn Trắc nghiệm Phương pháp quy nạp toán học có đáp án (Nhận biết). Tài liệu bao gồm 15 câu hỏi kèm đáp án thuộc danh mục Chương 3: Dãy số - Cấp số cộng và cấp số nhân. Tài liệu này sẽ giúp các bạn ôn tập, củng cố lại kiến thức để chuẩn bị cho các kỳ thi sắp tới. Mời các bạn tham khảo!
Cập nhật ngày
30/11/2021
Thời gian
25 Phút
Tham gia thi
0 Lần thi
Câu 1: Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với n = k thì ta cần chứng minh mệnh đề đúng đến:
A. n = k -1
B. B. n = k -2
C. C. n = k +1
D. D. n = k +2
Câu 2: Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:
A. n = 1
B. B. n = k
C. C. n = k + 1
D. D. n = p
Câu 4: Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên (p là một số tự nhiên), ta tiến hành hai bước:
Bước 1, kiểm tra mệnh đề P(n) đúng với n = p
Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ và phải chứng minh rằng nó cũng đúng với n = k + 1
Trong hai bước trên:
A. Chỉ có bước 1 đúng.
B. Chỉ có bước 2 đúng.
C. Cả hai bước đều đúng.
D. Cả hai bước đều sai.
Câu 5: Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k+1 thì ta cần chứng minh mệnh đề đúng với:
A. n = k
B. B. n = k + 1
C. C. n = k + 2
D. D. n = k + 3
Câu 6: Một học sinh chứng minh mệnh đề chia hết cho 7, như sau:
Giả sử (*) đúng với n = k tức là + 1 chia hết cho 7
Ta có: + 1 = 8 - 7, kết hợp với giả thiết + 1 chia hết cho 7 nên suy ra được + 1 chia hết cho 7.
Vậy đẳng thức (*) đúng với mọi
Khẳng định nào sau đây là đúng?
A. Học sinh trên chứng minh đúng.
B. Học sinh chứng minh sai vì không có giả thiết qui nạp.
C. Học sinh chứng minh sai vì không dùng giả thiết qui nạp.
D. Học sinh không kiểm tra bước 1 (bước cơ sở) của phương pháp qui nạp
Câu 8: Giả sử Q là tập con thật sự của tập hợp các số nguyên dương sao cho
a)
b)
Chọn mệnh đề đúng trong các mệnh đề sau.
A. Mọi số nguyên dương đều thuộc Q.
B. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc Q.
C. Mọi số nguyên bé hơn k đều thuộc Q.
D. Mọi số nguyên đều thuộc Q.
Câu 9: Tìm số nguyên dương p nhỏ nhất để với mọi số nguyên
A. p = 5
B. B. p = 3
C. C. p = 4
D. D. p = 2
Chia sẻ:
Đăng Nhập để viết bình luận