Câu hỏi:
Với a, b là các số thực dương tùy ý và a khác 1, đặt \(P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6}\). Mệnh đề nào sau đây đúng?
A. \(P = 6{\log _a}b\)
B. \(9{\log _a}b\)
C. \(15{\log _a}b\)
D. \(27{\log _a}b\)
Câu 1: Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là
A. 1
B. 2
C. 3
D. 0
05/11/2021 8 Lượt xem
Câu 2: Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.
A. \(m \ge 1 \vee m \le 0.\)
B. \(0 \le m < 1\)
C. \(0 \le m \le 1.\)
D. \(0 < m \le 1.\)
05/11/2021 10 Lượt xem
Câu 3: Cho hàm số y = f(x) có bảng biến thiên như sau:
6184b973d0906.png)
Giá trị cực tiểu của hàm số bằng
6184b973d0906.png)
A. \( - \frac{{25}}{4}\)
B. \( - \frac{{\sqrt 2 }}{2}\)
C. -6
D. 0
05/11/2021 10 Lượt xem
Câu 4: Giá trị nhỏ nhất của hàm số \(f(x) = {x^3} + 3{x^2} - 9x - 7\) trên đoạn [-4;0] bằng
A. 20
B. 13
C. -3
D. -7
05/11/2021 7 Lượt xem
Câu 5: Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng
A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)
D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)
05/11/2021 6 Lượt xem
Câu 6: Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = -i là điểm nào dưới đây?
A. M(-1;0)
B. N(0;-1)
C. P(1;0)
D. Q(0;1)
05/11/2021 7 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 122 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
46 người đang thi
- 1.2K
- 75
- 50
-
97 người đang thi
- 982
- 35
- 50
-
51 người đang thi
- 870
- 31
- 50
-
94 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận