Câu hỏi:

Với a, b là các số thực dương tùy ý và a khác 1, đặt \(P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6}\). Mệnh đề nào sau đây đúng?

540 Lượt xem
05/11/2021
3.4 9 Đánh giá

A. \(P = 6{\log _a}b\)

B. \(9{\log _a}b\)

C. \(15{\log _a}b\)

D. \(27{\log _a}b\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Trong không gian Oxyz, cho mặt phẳng (P): 3x - 4z + 2 = 0. Véc tơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (P)?

A. \(\overrightarrow {{n_1}} = \left( {3\,; - 4;\,2} \right)\)

B. \(\overrightarrow {{n_2}} = \left( { - 3;0;4} \right)\)

C. \(\overrightarrow {{n_3}} = \left( {3; - 4;0} \right)\)

D. \(\overrightarrow {{n_4}} = \left( {4\,;0\,; - 3} \right)\)

Xem đáp án

05/11/2021 12 Lượt xem

Câu 6:

Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng

A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)

D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)

Xem đáp án

05/11/2021 6 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 122 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh