Câu hỏi:

Cho hai số thực x; y thỏa mãn \({\log _{\sqrt 3 }}({y^2} + 8y + 16) + {\log _2}\left[ {(5 - x)\left( {1 + x} \right)} \right] = 2{\log _3}\frac{{5 + 4x - {x^2}}}{3} + {\log _2}{(2y + 8)^2}\). Gọi S là tập hợp tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của biểu thức \(P = \left| {\sqrt {{x^2} + {y^2}} - m} \right|\) không vượt quá 10. Hỏi S có bao nhiêu tập con khác rỗng.

299 Lượt xem
05/11/2021
3.4 9 Đánh giá

A. 2047

B. 16383

C. 16384

D. 32

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A. \(y = \frac{{x - 2}}{{x - 1}}\)

B. \(y = \frac{{x - 2}}{{x + 1}}\)

C. \(y = \frac{{2x + 1}}{{x - 1}}\)

D. \(y = - {x^3} + 3x + 2\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 4:

Cho khối trụ có độ dài đường sinh \(l = a\sqrt 3 \) và bán kính đáy \(r = a\sqrt 2 \). Thể tích của khối trụ đã cho bằng

A. \(\frac{{2\sqrt 3 }}{3}\pi {a^3}\)

B. \(2\sqrt 3 \pi {a^3}\)

C. \(\sqrt 3 \pi {a^3}\)

D. \(\frac{{2\sqrt 3 }}{2}\pi {a^3}\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 5:

Gọi z0 là nghiệm phức có phần ảo âm của phương trình: \({z^2} - 4z + 9 = 0\). Tìm tọa độ của điểm biểu diễn số phức \(\omega = \left( {1 + i} \right){z_0}\).

A. \(\left( {2 - \sqrt 5 \,;\,2 + \sqrt 5 } \right)\)

B. \(\left( {2 + \sqrt 5 \,;\,2 - \sqrt 5 } \right)\)

C. \(\left( {2 - \sqrt 5 \,;\, - 2 - \sqrt 5 } \right)\)

D. \(\left( {2 + \sqrt 5 \,;\, - 2 - \sqrt 5 } \right)\)

Xem đáp án

05/11/2021 10 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 120 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh