Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC. Mặt phẳng \((\alpha)\) qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của tỷ số \(\dfrac{V_1}V\)?

476 Lượt xem
05/11/2021
4.1 8 Đánh giá

A. \(\frac{2}{3}\)

B. \(\frac{1}{8}\)

C. \(\frac{1}{3}\)

D. \(\frac{3}{8}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

A. \(S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \)

B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

C. \(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \)

D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

Xem đáp án

05/11/2021 10 Lượt xem

Câu 4:

Tập nghiệm của bất phương trình \({\log ^2}_2\left( {2x} \right) - 5{\log _2}x - 5 \ge 0\) là

A. \(\left( { - \infty ;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\)

B. \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\)

C. \(\left( {0;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\)

D. \(\left( {0;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 5:

Thể tích khối chóp có đường cao bằng a và diện tích đáy bằng \(2{a^2}\sqrt 3 \) là

A. \(\frac{{2{a^3}\sqrt 3 }}{3}\)

B. \(\frac{{2{a^3}\sqrt 3 }}{2}\)

C. \(\frac{{2{a^3}}}{3}\)

D. \(\frac{{5{a^3}}}{{\sqrt 3 }}\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 122 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh