Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC. Mặt phẳng \((\alpha)\) qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của tỷ số \(\dfrac{V_1}V\)?

489 Lượt xem
05/11/2021
4.1 8 Đánh giá

A. \(\frac{2}{3}\)

B. \(\frac{1}{8}\)

C. \(\frac{1}{3}\)

D. \(\frac{3}{8}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho cấp số nhân (un) có u1 = 3 công bội \(q = - \frac{1}{3}\). Tính u4.

A. \( - \frac{1}{{27}}\)

B. \( - \frac{1}{9}\)

C. \( \frac{1}{9}\)

D. \(- \frac{1}{27}\)

Xem đáp án

05/11/2021 7 Lượt xem

Xem đáp án

05/11/2021 8 Lượt xem

Câu 5:

Với a là một số thực dương tùy ý, \({\log _2}\left( {8{a^3}} \right)\) bằng    

A. \(\frac{3}{2}{\log _2}a\)

B. \(\frac{1}{3}{\log _2}a\)

C. \(3 + 3{\log _2}a\)

D. \(3{\log _2}a\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 6:

Khẳng định nào sau đây là sai?

A. Nếu \(\int {f\left( x \right)\,{\rm{d}}x} = F\left( x \right) + C\) thì \(\int {f\left( u \right)\,{\rm{d}}} u = F\left( u \right) + C.\)

B. \(\int {kf\left( x \right)\,{\rm{d}}x} = k\int {f\left( x \right)\,{\rm{d}}x} \) (k là hằng số và k khác 0)

C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) = G(x)

D. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]\,{\rm{d}}x} = \int {f\left( x \right)\,{\rm{d}}x} + \int {g\left( x \right)\,{\rm{d}}x} .\)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 122 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh