Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC. Mặt phẳng \((\alpha)\) qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của tỷ số \(\dfrac{V_1}V\)?

510 Lượt xem
05/11/2021
4.1 8 Đánh giá

A. \(\frac{2}{3}\)

B. \(\frac{1}{8}\)

C. \(\frac{1}{3}\)

D. \(\frac{3}{8}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 10 = 0,\) điểm A(1;3;2) và đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + 2t\\ y = 1 + t\\ z = 1 - t \end{array} \right.\). Tìm phương trình đường thẳng \(\Delta \) cắt (P) và d lầnlượt tại hai điểm N và M sao cho A là trung điểm của đoạn MN.

A. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{{ - 4}} = \frac{{z + 3}}{{ - 1}}\)

B. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{4} = \frac{{z - 3}}{{ - 1}}\)

C. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{4} = \frac{{z + 3}}{{ - 1}}\)

D. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{{ - 1}}\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 6:

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 8y - 2z - 4 = 0\). Tâm và bán kính của mặt cầu (S) lần lượt là 

A. \(I\left( {2; - 4;1} \right),R = 5\)

B. \(I\left( { - 2;4; - 1} \right),R = 25\)

C. \(I\left( {2; - 4;1} \right),R = \sqrt {21} \)

D. \(I\left( { - 2;4; - 1} \right),R = 21\)

Xem đáp án

05/11/2021 9 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 122 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh