Câu hỏi:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y + 6z - 1 = 0.\) Tâm của mặt cầu (S) là

410 Lượt xem
05/11/2021
3.2 6 Đánh giá

A. I(2;-1;3)

B. I(-2;1;3)

C. I(2;-1;-3)

D. I(2;1;-3)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Tập nghiệm của bất phương trình \({\left( {\frac{1}{{1 + {a^2}}}} \right)^{2x + 1}} > 1\) (với a là tham số, a khác 0) là

A. \(\left( { - \infty ; - \frac{1}{2}} \right).\)

B. \(\left( { - \infty ;0} \right).\)

C. \(\left( { - \frac{1}{2}; + \infty } \right).\)

D. \(\left( {0; + \infty } \right).\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 5:

Cho khối chóp S.ABC có đáy là tam giác đều cạnh bằng \(a,SA = a\sqrt 3 ,\) cạnh bên SA vuông góc với đáy. Thể tích khối chóp S.ABC bằng

A. \(\frac{{{a^3}\sqrt 3 }}{2}.\)

B. \(\frac{{{a^3}}}{2}.\)

C. \(\frac{{{a^3}\sqrt 3 }}{4}.\)

D. \(\frac{{{a^3}}}{4}.\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 6:

Cho tích phân \(I = \int\limits_0^1 {\frac{{dx}}{{\sqrt {4 - {x^2}} }}.} \) Nếu đổi biến số \(x = 2\sin t,t \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thì 

A. \(I = \int\limits_0^{\frac{\pi }{6}} {dt} .\)

B. \(I = \int\limits_0^{\frac{\pi }{6}} {tdt} .\)

C. \(I = \int\limits_0^{\frac{\pi }{6}} {\frac{{dt}}{t}} .\)

D. \(I = \int\limits_0^{\frac{\pi }{3}} {dt} .\)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Việt
Thông tin thêm
  • 16 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh