Câu hỏi:

Trong không gian Oxyz, cho mặt phẳng (P): 3x - 4z + 2 = 0. Véc tơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (P)?

277 Lượt xem
05/11/2021
3.7 10 Đánh giá

A. \(\overrightarrow {{n_1}} = \left( {3\,; - 4;\,2} \right)\)

B. \(\overrightarrow {{n_2}} = \left( { - 3;0;4} \right)\)

C. \(\overrightarrow {{n_3}} = \left( {3; - 4;0} \right)\)

D. \(\overrightarrow {{n_4}} = \left( {4\,;0\,; - 3} \right)\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng

A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)

D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 5:

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 8y - 2z - 4 = 0\). Tâm và bán kính của mặt cầu (S) lần lượt là 

A. \(I\left( {2; - 4;1} \right),R = 5\)

B. \(I\left( { - 2;4; - 1} \right),R = 25\)

C. \(I\left( {2; - 4;1} \right),R = \sqrt {21} \)

D. \(I\left( { - 2;4; - 1} \right),R = 21\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 6:

Cho cấp số nhân (un) có u1 = 3 công bội \(q = - \frac{1}{3}\). Tính u4.

A. \( - \frac{1}{{27}}\)

B. \( - \frac{1}{9}\)

C. \( \frac{1}{9}\)

D. \(- \frac{1}{27}\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 121 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh