Câu hỏi:

Khẳng định nào sau đây là sai?

283 Lượt xem
05/11/2021
3.4 9 Đánh giá

A. Nếu \(\int {f\left( x \right)\,{\rm{d}}x} = F\left( x \right) + C\) thì \(\int {f\left( u \right)\,{\rm{d}}} u = F\left( u \right) + C.\)

B. \(\int {kf\left( x \right)\,{\rm{d}}x} = k\int {f\left( x \right)\,{\rm{d}}x} \) (k là hằng số và k khác 0)

C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) = G(x)

D. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]\,{\rm{d}}x} = \int {f\left( x \right)\,{\rm{d}}x} + \int {g\left( x \right)\,{\rm{d}}x} .\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3:

Cho hai số phức \({z_1} = 1 + 2i,{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).

A. \(z = \frac{1}{{10}} + \frac{7}{{10}}i\)

B. \(z = \frac{1}{5} + \frac{7}{5}i\)

C. \(z = \frac{1}{5} - \frac{7}{5}i\)

D. \(z = - \frac{1}{{10}} + \frac{7}{{10}}i\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 5:

Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng

A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)

D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)

Xem đáp án

05/11/2021 6 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 121 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh