Câu hỏi:
Cho tập hợp \(S = {\rm{\{ }}1;2;3;4;5;6\} \). Viết ngẫu nhiên lên bảng một số tự nhiên có 3 chữ số khác nhau lấy từ tập S. Xác suất để được một số chia hết cho 6 bằng
A. \(\frac{{17}}{{120}}\)
B. \(\frac{1}{5}\)
C. \(\frac{3}{{20}}\)
D. \(\frac{7}{{40}}\)
Câu 1: Gọi z0 là nghiệm phức có phần ảo âm của phương trình: \({z^2} - 4z + 9 = 0\). Tìm tọa độ của điểm biểu diễn số phức \(\omega = \left( {1 + i} \right){z_0}\).
A. \(\left( {2 - \sqrt 5 \,;\,2 + \sqrt 5 } \right)\)
B. \(\left( {2 + \sqrt 5 \,;\,2 - \sqrt 5 } \right)\)
C. \(\left( {2 - \sqrt 5 \,;\, - 2 - \sqrt 5 } \right)\)
D. \(\left( {2 + \sqrt 5 \,;\, - 2 - \sqrt 5 } \right)\)
05/11/2021 10 Lượt xem
Câu 2: Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng
A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)
D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)
05/11/2021 6 Lượt xem
Câu 3: Cho hàm số \(y = {x^4} - 3{x^2} - 3\), có đồ thị hình vẽ dưới đây. Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt?
6184b9745b3ba.png)
6184b9745b3ba.png)
A. m = -3
B. m = -4
C. m = 0
D. m = 4
05/11/2021 7 Lượt xem
Câu 4: Với a, b là các số thực dương tùy ý và a khác 1, đặt \(P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6}\). Mệnh đề nào sau đây đúng?
A. \(P = 6{\log _a}b\)
B. \(9{\log _a}b\)
C. \(15{\log _a}b\)
D. \(27{\log _a}b\)
05/11/2021 8 Lượt xem
Câu 5: Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2020] để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là?
6184b97495293.png)
6184b97495293.png)
A. 2041200
B. 2041204
C. 2041195
D. 2041207
05/11/2021 9 Lượt xem
Câu 6: Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.
A. \(m \ge 1 \vee m \le 0.\)
B. \(0 \le m < 1\)
C. \(0 \le m \le 1.\)
D. \(0 < m \le 1.\)
05/11/2021 10 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 122 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 287
- 50
-
25 người đang thi
- 1.2K
- 75
- 50
-
59 người đang thi
- 1.0K
- 35
- 50
-
24 người đang thi
- 906
- 31
- 50
-
52 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận