Câu hỏi:
Cho hàm số y = f(x) liên tục trên R có \(f'\left( x \right) = \left( {2x - 3} \right){\left( {x + 1} \right)^2}{\left( {x - 2} \right)^3}\left( {4 - x} \right)\). Số điểm cực đại của hàm số y = f(x) là
A. 4
B. 2
C. 3
D. 1
Câu 1: Cho hàm số y = f(x) có bảng biến thiên như sau:
6184b973d0906.png)
Giá trị cực tiểu của hàm số bằng
6184b973d0906.png)
A. \( - \frac{{25}}{4}\)
B. \( - \frac{{\sqrt 2 }}{2}\)
C. -6
D. 0
05/11/2021 10 Lượt xem
Câu 2: Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 8y - 2z - 4 = 0\). Tâm và bán kính của mặt cầu (S) lần lượt là
A. \(I\left( {2; - 4;1} \right),R = 5\)
B. \(I\left( { - 2;4; - 1} \right),R = 25\)
C. \(I\left( {2; - 4;1} \right),R = \sqrt {21} \)
D. \(I\left( { - 2;4; - 1} \right),R = 21\)
05/11/2021 9 Lượt xem
Câu 3: Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng
A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)
D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)
05/11/2021 6 Lượt xem
Câu 4: Cho khối lăng trụ có diện tích đáy B = 25 và chiều cao h = 7. Thể tích của khối lăng trụ đã cho bằng
A. 32
B. \(\frac{{175}}{3}\)
C. \(\frac{{32}}{3}\)
D. 175
05/11/2021 7 Lượt xem
Câu 5: Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?
A. \(S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \)
B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)
C. \(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \)
D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)
05/11/2021 10 Lượt xem
Câu 6: Cho hai số phức \({z_1} = 1 + 2i,{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).
A. \(z = \frac{1}{{10}} + \frac{7}{{10}}i\)
B. \(z = \frac{1}{5} + \frac{7}{5}i\)
C. \(z = \frac{1}{5} - \frac{7}{5}i\)
D. \(z = - \frac{1}{{10}} + \frac{7}{{10}}i\)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 122 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 286
- 50
-
76 người đang thi
- 1.1K
- 75
- 50
-
60 người đang thi
- 948
- 35
- 50
-
88 người đang thi
- 832
- 31
- 50
-
83 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận