Câu hỏi:
Cho hàm số \(y = {x^4} - 3{x^2} - 3\), có đồ thị hình vẽ dưới đây. Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt?
A. m = -3
B. m = -4
C. m = 0
D. m = 4
Câu 1: Biết \(\int\limits_0^3 {f\left( x \right)dx = \frac{5}{3}} \) và \(\int\limits_0^4 {f\left( t \right)dt = \frac{3}{5}} \). Tính \(\int\limits_3^4 {f\left( u \right)du} \).
A. \(\frac{8}{{15}}\)
B. \(\frac{14}{{15}}\)
C. \(-\frac{17}{{15}}\)
D. \(-\frac{16}{{15}}\)
05/11/2021 7 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 10 = 0,\) điểm A(1;3;2) và đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + 2t\\ y = 1 + t\\ z = 1 - t \end{array} \right.\). Tìm phương trình đường thẳng \(\Delta \) cắt (P) và d lầnlượt tại hai điểm N và M sao cho A là trung điểm của đoạn MN.
A. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{{ - 4}} = \frac{{z + 3}}{{ - 1}}\)
B. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{4} = \frac{{z - 3}}{{ - 1}}\)
C. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{4} = \frac{{z + 3}}{{ - 1}}\)
D. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{{ - 1}}\)
05/11/2021 9 Lượt xem
Câu 3: Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy ABCD là hình thang vuông tại A và D có AB = 2AD = 2DC = a (Hình vẽ minh họa). Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng
6184b974330b9.png)
6184b974330b9.png)
A. 60o
B. 90o
C. 30o
D. 45o
05/11/2021 8 Lượt xem
Câu 4: Cho hai số phức \({z_1} = 1 + 2i,{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).
A. \(z = \frac{1}{{10}} + \frac{7}{{10}}i\)
B. \(z = \frac{1}{5} + \frac{7}{5}i\)
C. \(z = \frac{1}{5} - \frac{7}{5}i\)
D. \(z = - \frac{1}{{10}} + \frac{7}{{10}}i\)
05/11/2021 8 Lượt xem
Câu 5: Tập xác định của hàm số \(y = {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right)\) là.
A. \(\left( { - \infty ;\,1} \right) \cup \left( {2;\, + \infty } \right)\)
B. (1;2)
C. \(\left( {2;\, + \infty } \right)\)
D. \(\left( { - \infty ;\,1} \right)\)
05/11/2021 7 Lượt xem
Câu 6: Gọi z0 là nghiệm phức có phần ảo âm của phương trình: \({z^2} - 4z + 9 = 0\). Tìm tọa độ của điểm biểu diễn số phức \(\omega = \left( {1 + i} \right){z_0}\).
A. \(\left( {2 - \sqrt 5 \,;\,2 + \sqrt 5 } \right)\)
B. \(\left( {2 + \sqrt 5 \,;\,2 - \sqrt 5 } \right)\)
C. \(\left( {2 - \sqrt 5 \,;\, - 2 - \sqrt 5 } \right)\)
D. \(\left( {2 + \sqrt 5 \,;\, - 2 - \sqrt 5 } \right)\)
05/11/2021 10 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 122 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 283
- 50
-
68 người đang thi
- 995
- 75
- 50
-
86 người đang thi
- 810
- 35
- 50
-
27 người đang thi
- 705
- 31
- 50
-
45 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận