Câu hỏi:

Cho hai số thực a, b thỏa mãn \(\frac{1}{3} < b < a < 1\) và biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{{4{a^3}}}} \right) + 12\log _{\frac{b}{a}}^2a\) có giá trị nhỏ nhất. Tính \(\frac{b}{a}\).

426 Lượt xem
05/11/2021
4.0 10 Đánh giá

A. \(\frac{1}{{\sqrt[3]{4}}}\)

B. \(\frac{1}{{2\sqrt[3]{2}}}\)

C. \(\frac{1}{{\sqrt[3]{2}}}\)

D. 2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Tập xác định của hàm số \(y = {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right)\) là.

A. \(\left( { - \infty ;\,1} \right) \cup \left( {2;\, + \infty } \right)\)

B. (1;2)

C. \(\left( {2;\, + \infty } \right)\)

D. \(\left( { - \infty ;\,1} \right)\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 2:

Nghiệm của phương trình 2x = 4 là

A. x = 1

B. x = 2

C. x = 3

D. x = 4

Xem đáp án

05/11/2021 8 Lượt xem

Câu 3:

Tiệm cận ngang của đồ thị hàm số \(y = \frac{{x + 1}}{{1 - 2x}}\)

A. \(x = \frac{1}{2}\)

B. \(y = \frac{1}{2}\)

C. \(x =- \frac{1}{2}\)

D. \(y = -\frac{1}{2}\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 4:

Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

A. \(S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \)

B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

C. \(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \)

D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

Xem đáp án

05/11/2021 10 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 122 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh