Câu hỏi:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số bằng
A. \( - \frac{{25}}{4}\)
B. \( - \frac{{\sqrt 2 }}{2}\)
C. -6
D. 0
Câu 1: Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là
A. 2
B. 3
C. 1
D. 4
05/11/2021 8 Lượt xem
Câu 2: Với a là một số thực dương tùy ý, \({\log _2}\left( {8{a^3}} \right)\) bằng
A. \(\frac{3}{2}{\log _2}a\)
B. \(\frac{1}{3}{\log _2}a\)
C. \(3 + 3{\log _2}a\)
D. \(3{\log _2}a\)
05/11/2021 8 Lượt xem
Câu 3: Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.
A. \(m \ge 1 \vee m \le 0.\)
B. \(0 \le m < 1\)
C. \(0 \le m \le 1.\)
D. \(0 < m \le 1.\)
05/11/2021 10 Lượt xem
Câu 4: Cho khối lăng trụ có diện tích đáy B = 25 và chiều cao h = 7. Thể tích của khối lăng trụ đã cho bằng
A. 32
B. \(\frac{{175}}{3}\)
C. \(\frac{{32}}{3}\)
D. 175
05/11/2021 7 Lượt xem
Câu 5: Cho hai số thực a, b thỏa mãn \(\frac{1}{3} < b < a < 1\) và biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{{4{a^3}}}} \right) + 12\log _{\frac{b}{a}}^2a\) có giá trị nhỏ nhất. Tính \(\frac{b}{a}\).
A. \(\frac{1}{{\sqrt[3]{4}}}\)
B. \(\frac{1}{{2\sqrt[3]{2}}}\)
C. \(\frac{1}{{\sqrt[3]{2}}}\)
D. 2
05/11/2021 8 Lượt xem
Câu 6: Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số \(f\left( x \right) = \left| {m\left( {{x^2} - 2x + 3} \right) - 5m + 1} \right|\) trên đoạn [0;3] bằng 7. Tổng các phần tử của S bằng
A. \(- \frac{1}{3}\)
B. 2
C. \(\frac{2}{3}\)
D. \(\frac{8}{3}\)
05/11/2021 11 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 121 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.9K
- 283
- 50
-
79 người đang thi
- 906
- 75
- 50
-
85 người đang thi
- 720
- 35
- 50
-
70 người đang thi
- 618
- 31
- 50
-
26 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận