Câu hỏi:
Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2020] để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là?
6184b97495293.png)
A. 2041200
B. 2041204
C. 2041195
D. 2041207
Câu 1: Trên không gian Oxyz, hình chiếu vuông góc của điểm A(2;5;-3) trên mặt phẳng (Oxz) có tọa độ là:
A. (2;5;0)
B. (0;5;-3)
C. (2;0;-3)
D. (2;5;-3)
05/11/2021 8 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 10 = 0,\) điểm A(1;3;2) và đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + 2t\\ y = 1 + t\\ z = 1 - t \end{array} \right.\). Tìm phương trình đường thẳng \(\Delta \) cắt (P) và d lầnlượt tại hai điểm N và M sao cho A là trung điểm của đoạn MN.
A. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{{ - 4}} = \frac{{z + 3}}{{ - 1}}\)
B. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{4} = \frac{{z - 3}}{{ - 1}}\)
C. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{4} = \frac{{z + 3}}{{ - 1}}\)
D. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{{ - 1}}\)
05/11/2021 9 Lượt xem
Câu 3: Cho hình chóp có S.ABCD đáy ABCD là hình chữ nhật. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm của SA biết \(AD = a\sqrt 3 ,AB = a\). Khi đó khoảng cách từ C đến (MBD) là:
A. \(\frac{{2a\sqrt {15} }}{{10}}\)
B. \(\frac{{a\sqrt {39} }}{{13}}\)
C. \(\frac{{2a\sqrt {39} }}{{13}}\)
D. \(\frac{{a\sqrt {39} }}{{26}}\)
05/11/2021 8 Lượt xem
Câu 4: Cho hàm số y = f(x) xác định trên R và có bảng biến thiên như sau:
6184b973a6100.png)
Mệnh đề nào dưới đây đúng?
6184b973a6100.png)
A. Hàm số f(x) đồng biến trên khoảng (-1;4)
B. Hàm số f(x) nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\)
C. Hàm số f(x) nghịch biến trên khoảng (-2;2)
D. Hàm số f(x) đồng biến trên khoảng (0;2)
05/11/2021 9 Lượt xem
Câu 5: Cho hai số phức \({z_1} = 3 - i\) và \({z_2} = - 1 + i\). Tính tổng phần thực và phần ảo của số phức \({z_1}\overline {{z_2}} \).
A. -4
B. -2
C. 2
D. -6
05/11/2021 8 Lượt xem
Câu 6: Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng
A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)
D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)
05/11/2021 6 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 122 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
83 người đang thi
- 1.2K
- 75
- 50
-
20 người đang thi
- 995
- 35
- 50
-
63 người đang thi
- 882
- 31
- 50
-
26 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận