Câu hỏi:
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = -i là điểm nào dưới đây?
A. M(-1;0)
B. N(0;-1)
C. P(1;0)
D. Q(0;1)
Câu 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC. Mặt phẳng \((\alpha)\) qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của tỷ số \(\dfrac{V_1}V\)?
A. \(\frac{2}{3}\)
B. \(\frac{1}{8}\)
C. \(\frac{1}{3}\)
D. \(\frac{3}{8}\)
05/11/2021 8 Lượt xem
Câu 2: Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là
A. 2
B. 3
C. 1
D. 4
05/11/2021 8 Lượt xem
Câu 3: Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?
A. \(S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \)
B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)
C. \(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \)
D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)
05/11/2021 10 Lượt xem
Câu 4: Giá trị nhỏ nhất của hàm số \(f(x) = {x^3} + 3{x^2} - 9x - 7\) trên đoạn [-4;0] bằng
A. 20
B. 13
C. -3
D. -7
05/11/2021 7 Lượt xem
05/11/2021 7 Lượt xem
Câu 6: Cho hai số phức \({z_1} = 3 - i\) và \({z_2} = - 1 + i\). Tính tổng phần thực và phần ảo của số phức \({z_1}\overline {{z_2}} \).
A. -4
B. -2
C. 2
D. -6
05/11/2021 8 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 122 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
79 người đang thi
- 1.1K
- 75
- 50
-
23 người đang thi
- 868
- 35
- 50
-
48 người đang thi
- 750
- 31
- 50
-
89 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận