Câu hỏi: Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \) .
A. \(I = {e^{\dfrac{\pi }{2}}} + 2\)
B. \(I = {e^{\dfrac{\pi }{2}}} + 1\)
C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)
D. \(I = {e^{\dfrac{\pi }{2}}}\)
Câu 1: Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).
A. \(4\cos x + \ln x + C\).
B. \(4\cos x + \dfrac{1}{x} + C\).
C. \(4\sin x - \dfrac{1}{x} + C\).
D. \(4\sin x + \dfrac{1}{x} + C\).
18/11/2021 1 Lượt xem
Câu 2: Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là
A. tam giác vuông tại \(A\)
B. tam giác cân tại \(A\).
C. tam giác vuông cân tại \(A\).
D. Tam giác đều.
18/11/2021 1 Lượt xem
Câu 3: Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 9\) có tâm là:
A. \(I\left( {1; - 2;0} \right).\)
B. \(I\left( { - 1;2;0} \right).\)
C. \(I\left( {1;2;0} \right).\)
D. \(I\left( { - 1; - 2;0} \right).\)
18/11/2021 2 Lượt xem
Câu 4: Nếu \(\int\limits_a^d {f(x)\,dx = 5\,,\,\,\int\limits_b^d {f(x)\,dx = 2} \,} \) với a < d < b thì \(\int\limits_a^b {f(x)\,dx} \) bằng :
A. 3
B. 2
C. 10
D. 0
18/11/2021 2 Lượt xem
Câu 5: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
18/11/2021 2 Lượt xem
Câu 6: Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)
B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).
C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).
D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).
18/11/2021 1 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 585
- 0
- 40
-
15 người đang thi
- 614
- 13
- 40
-
34 người đang thi
- 544
- 3
- 30
-
86 người đang thi
- 522
- 3
- 30
-
90 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận