Câu hỏi: Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:

242 Lượt xem
18/11/2021
3.2 10 Đánh giá

A. \(\cot x - 2\tan x + C\).

B. \( - \cot x + 2\tan x + C\).

C. \(\cot x + 2\tan x + C\).

D. \( - \cot x - 2\tan x + C\) 

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3: Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x}  + C\) thì f(x) bằng

A. \({e^x} + 2\sin x\). 

B. \({e^x} + \sin 2x\).

C. \({e^x} + {\cos ^2}x\).        

D. \({e^x} - 2\sin x\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 4: Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 9\) có tâm là:

A. \(I\left( {1; - 2;0} \right).\)

B. \(I\left( { - 1;2;0} \right).\) 

C. \(I\left( {1;2;0} \right).\)

D. \(I\left( { - 1; - 2;0} \right).\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 5: Tính tích phân \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx} \) ta được:

A. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 6 - 4\sqrt 3 \). 

B. \(\dfrac{{{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{6} + 6 - 4\sqrt 3 \).

C. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 3 - 2\sqrt 3 \). 

D. 0

Xem đáp án

18/11/2021 3 Lượt xem

Câu 6: Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?

A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).  

B.  \(I = 2004\int\limits_0^\pi  {\sqrt {1 - \cos 2x} } \,dx\).

C. \(I = 4008\sqrt 2 \).

D. \(I = 2004\sqrt 2 \int\limits_0^\pi  {\sin x\,dx} \).

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh