Câu hỏi: Tính định thức: \(\left| A \right| = \left| {\begin{array}{*{20}{c}} 2&5&1&3\\ 3&2&{ - 1}&4\\ { - 2}&1&0&5\\ 5&7&2&{ - 2} \end{array}} \right|\)

201 Lượt xem
30/08/2021
3.2 5 Đánh giá

A. |A| = 4

B. |A| = 0

C. |A| = −3

D. |A| = −7

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào hàng thứ 2, hàng 1 đã được nhân với số 3 và đổi chỗ hàng 2 cho hàng 3. Phép biến đổi trên tương đương với nhân bên trái ma trận A cho ma trận nào sau đây.

A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 3&1&0 \end{array}} \right]\)

B. 3 câu kia đều sai

C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 3&0&1\\ 0&1&0 \end{array}} \right]\)

D. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 3&1&0\\ 0&0&1 \end{array}} \right]\)

Xem đáp án

30/08/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 5
Thông tin thêm
  • 7 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên