Câu hỏi: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 2&1&3&{ - 1}\\ 3&2&0&1\\ 1&3&{ - 1}&2\\ 4&6&3&m \end{array}} \right]\) . Tính m để A khả nghịch và r(A-1) = 3.

194 Lượt xem
30/08/2021
3.7 10 Đánh giá

A. m = 1

B. 3 câu kia đều sai

C. m = −2

D. m = 2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông A = (ak,j) cấp n, với ak,j=z(k−1).(j−1) được gọi là ma trận Fourier. Tìm biến đổi Fourier cấp 2.

A. \(A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}\\ 1&1 \end{array}} \right)\)

B. \(A = \left( {\begin{array}{*{20}{c}} 1&{ 1}\\ 1&-1 \end{array}} \right)\)

C. 3 câu kia đều sai

D. \(A = \left( {\begin{array}{*{20}{c}} 1&{ 1}\\ -1&-1 \end{array}} \right)\)

Xem đáp án

30/08/2021 0 Lượt xem

Xem đáp án

30/08/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 5
Thông tin thêm
  • 7 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên