Câu hỏi: Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận. Cho ma trận \(A = \left( {\begin{array}{*{20}{c}} 1&0&0\\ 2&1&0\\ 3&2&2 \end{array}} \right)\) . Tìm vết của ma trận A100.
A. 3 câu kia đều sai
B. 4100
C. 2100 + 4100
D. 2100
Câu 1: Tìm định thức của ma trận A100, biết \(A = \left( {\begin{array}{*{20}{c}} 1&i\\ 2&{1 + 3i} \end{array}} \right).\)
A. Các câu kia đều sai
B. −250
C. 250
D. 250(1 + i)
30/08/2021 0 Lượt xem
Câu 2: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào hàng thứ 2, hàng 1 đã được nhân với số 3 và đổi chỗ hàng 2 cho hàng 3. Phép biến đổi trên tương đương với nhân bên trái ma trận A cho ma trận nào sau đây.
A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 3&1&0 \end{array}} \right]\)
B. 3 câu kia đều sai
C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 3&0&1\\ 0&1&0 \end{array}} \right]\)
D. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 3&1&0\\ 0&0&1 \end{array}} \right]\)
30/08/2021 0 Lượt xem
Câu 3: Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận. Cho ma trận \(A = \left( {\begin{array}{*{20}{c}} 1&3&2\\ 4&2&4\\ 3&2&2 \end{array}} \right)\) và \(B = \left( {\begin{array}{*{20}{c}} 5&{ - 2}&4\\ 1&3&7\\ 6&4&5 \end{array}} \right)\) . Tìm vết của ma trận AB.
A. 3 câu kia đều sai
B. 70
C. 46
D. 65
30/08/2021 0 Lượt xem
Câu 4: Tính định thức của ma trận: \(A = \left[ {\begin{array}{*{20}{c}} 3&4&1&{ - 1}\\ 4&1&0&3\\ 2&3&{ - 1}&{ - 4}\\ 6&4&0&3 \end{array}} \right]\)
A. det(A) = 53
B. det(A) = 14
C. det(A) = 20
D. 3 câu kia đều sai
30/08/2021 0 Lượt xem
Câu 5: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&2 \end{array}} \right]\) . Đặt \(B= \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&1 \end{array}} \right]\) . Tính A100.
A. 299B
B. 2100B.
C. 2199B
D. 2200B
30/08/2021 0 Lượt xem
Câu 6: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông A = (ak,j) cấp n, với ak,j=z(k−1).(j−1) được gọi là ma trận Fourier. Tìm biến đổi Fourier cấp 2.
A. \(A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}\\ 1&1 \end{array}} \right)\)
B. \(A = \left( {\begin{array}{*{20}{c}} 1&{ 1}\\ 1&-1 \end{array}} \right)\)
C. 3 câu kia đều sai
D. \(A = \left( {\begin{array}{*{20}{c}} 1&{ 1}\\ -1&-1 \end{array}} \right)\)
30/08/2021 0 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 5
- 7 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
86 người đang thi
- 584
- 18
- 25
-
12 người đang thi
- 495
- 15
- 25
-
18 người đang thi
- 420
- 10
- 25
-
47 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận