Câu hỏi: Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận. Cho ma trận \(A = \left( {\begin{array}{*{20}{c}} 1&0&0\\ 2&1&0\\ 3&2&2 \end{array}} \right)\) . Tìm vết của ma trận A100.

167 Lượt xem
30/08/2021
3.4 8 Đánh giá

A. 3 câu kia đều sai

B. 4100

C. 2100 + 4100

D. 2100 

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

30/08/2021 0 Lượt xem

Câu 3: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào hàng thứ 2, hàng 1 đã được nhân với số 3 và đổi chỗ hàng 2 cho hàng 3. Phép biến đổi trên tương đương với nhân bên trái ma trận A cho ma trận nào sau đây.

A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 3&1&0 \end{array}} \right]\)

B. 3 câu kia đều sai

C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 3&0&1\\ 0&1&0 \end{array}} \right]\)

D. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 3&1&0\\ 0&0&1 \end{array}} \right]\)

Xem đáp án

30/08/2021 0 Lượt xem

Câu 4: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông A = (ak,j) cấp n, với ak,j=z(k−1).(j−1) được gọi là ma trận Fourier. Tìm biến đổi Fourier cấp 2.

A. \(A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}\\ 1&1 \end{array}} \right)\)

B. \(A = \left( {\begin{array}{*{20}{c}} 1&{ 1}\\ 1&-1 \end{array}} \right)\)

C. 3 câu kia đều sai

D. \(A = \left( {\begin{array}{*{20}{c}} 1&{ 1}\\ -1&-1 \end{array}} \right)\)

Xem đáp án

30/08/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 5
Thông tin thêm
  • 7 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên