Câu hỏi:
Tích phân \(\int\limits_0^1 {\left( {3x + 1} \right)\left( {x + 3} \right)dx} \) bằng
A. 6
B. 12
C. 9
D. 5
Câu 1: Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 2 = 0\) và điểm \(I\left( {1;2; - 3} \right)\). Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt phẳng \(\left( P \right)\) bằng:
A. 1
B. \(\frac{{11}}{3}\)
C. 3
D. \(\frac{1}{3}\)
05/11/2021 7 Lượt xem
Câu 2: Cho số phức \(z = 2 - i\). Trong mặt phẳng tọa độ Oxyz, điểm biểu diễn của số phức \(\overline z \) có tọa độ là
A. \(\left( {2; - 1} \right).\)
B. \(\left( {2;1} \right).\)
C. \(\left( {1;2} \right).\)
D. \(\left( { - 2;1} \right).\)
05/11/2021 8 Lượt xem
Câu 3: Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z = - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:
A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
05/11/2021 7 Lượt xem
Câu 4: Trong mặt phẳng tọa độ (Oxy) cho hình phẳng D giới hạn bởi các đường \(y = 2{x^2}\), \(y = \frac{{{x^2}}}{8}\), \(y = - x + 6\). Tính diện tích hình phẳng D nằm bên phải của trục tung
A. \(S = \frac{{1075}}{{192}}\)
B. \(S = \frac{{135}}{{64}}\)
C. \(S = \frac{{185}}{{24}}\)
D. \(S = \frac{{335}}{{96}}\)
05/11/2021 7 Lượt xem
Câu 5: Biết rằng \(\left( {2 + 3i} \right)a + \left( {1 - 2i} \right)b = 4 + 13i\) với \(a,\,\,b\) là các số thực. Giá trị của \(a + b\) bằng
A. 1
B. 9
C. 5
D. -3
05/11/2021 7 Lượt xem
Câu 6: Trong không gian với hệ tọa độ Oxy, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt phẳng \(\left( P \right):\,\,2x + 3y + z - 17 = 0\).
A. \(M\left( {0;0; - 3} \right)\)
B. \(M\left( {0;0;3} \right)\)
C. \(M\left( {0;0; - 4} \right)\)
D. \(M\left( {0;0;4} \right)\)
05/11/2021 9 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.9K
- 283
- 50
-
80 người đang thi
- 1.0K
- 121
- 50
-
39 người đang thi
- 720
- 35
- 50
-
88 người đang thi
- 618
- 31
- 50
-
52 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận