Câu hỏi:

Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z =  - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:

226 Lượt xem
05/11/2021
3.6 9 Đánh giá

A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)

B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)

C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)

D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 4:

Tích phân \(\int\limits_1^e {\frac{{\ln x}}{x}dx} \) bằng:

A. \(\frac{{{e^2} + 1}}{2}\)

B. \(\frac{1}{2}\)

C. \( - \frac{1}{2}\)

D. \(\frac{{{e^2} - 1}}{2}\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 6:

Trong không gian Oxyz, cho hai điểm \(A\left( {1;3;5} \right)\) và \(B\left( {1; - 1;1} \right)\). Trung điểm của đoạn thẳng AB có tọa độ là

A. \(\left( {2;2;6} \right)\)

B. \(\left( {0; - 4; - 4} \right)\)

C. \(\left( {0; - 2; - 2} \right)\)

D. \(\left( {1;1;3} \right)\)

Xem đáp án

05/11/2021 9 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
Thông tin thêm
  • 75 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh