Câu hỏi:
Số phức z thỏa mãn \(2z - 3\left( {1 + i} \right) = iz + 7 - 3i\) là
A. \(z = \frac{{14}}{5} + \frac{8}{5}i.\)
B. \(z = 4 - 2i.\)
C. \(z = 4 + 2i.\)
D. \(z = \frac{{14}}{5} - \frac{8}{5}i.\)
Câu 1: Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1;\) \(x = 2\) bằng
A. \(\frac{7}{3}.\)
B. \(\frac{2}{3}.\)
C. \(\frac{3}{2}.\)
D. \(\frac{1}{3}.\)
05/11/2021 7 Lượt xem
Câu 2: Giá trị dương của tham số m sao cho diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x + 3\) và các đường thẳng \(y = 0,\) \(x = 0,\) \(x = m\) bằng 10 là
A. m = 5
B. m = 1
C. \(m = \frac{7}{2}.\)
D. m = 2
05/11/2021 8 Lượt xem
Câu 3: Gọi z là một nghiệm của phương trình \({z^2} - z + 1 = 0\). Giá trị của biểu thức \(M = {z^{2019}} + {z^{2018}} + \frac{1}{{{z^{2019}}}} + \frac{1}{{{z^{2018}}}} + 5\) bằng
A. 5
B. 2
C. 7
D. -1
05/11/2021 6 Lượt xem
Câu 4: Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm \(M\left( {2;0; - 1} \right)\) và có vecto chỉ phương \(\overrightarrow a = \left( {2; - 3;1} \right)\) là
A. \(\left\{ \begin{array}{l}x = 2 + 2t\\y = - 3t\\z = - 1 + t\end{array} \right.\)
B. \(\left\{ \begin{array}{l}x = 4 + 2t\\y = - 6\\z = 2 - t\end{array} \right.\)
C. \(\left\{ \begin{array}{l}x = - 2 + 2t\\y = - 3t\\z = 2 - t\end{array} \right.\)
D. \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6t\\z = 1 + 2t\end{array} \right.\)
05/11/2021 7 Lượt xem
Câu 5: Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng
A. \(\int\limits_a^b {\left| {f\left( x \right) + g\left( x \right)} \right|dx} \)
B. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)
D. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} } \right|.\)
05/11/2021 7 Lượt xem
Câu 6: Cho biết \(\int\limits_0^1 {x\sqrt {{x^2} + 1} dx = \frac{{a\sqrt 2 - 1}}{b}} \) với \(a,\,\,b\) là các số tự nhiên. Giá trị của \({a^2} - {b^2}\) bằng
A. -5
B. 5
C. 2
D. 1
05/11/2021 10 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 74 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận