Câu hỏi:
Cho hàm số \(f\left( x \right)\) liên tục có đạo hàm trên đoạn \(\left[ { - 1;2} \right],\) \(f\left( { - 1} \right) = 8;\) \(f\left( 2 \right) = - 1\). Tích phân \(\int\limits_{ - 1}^2 {f'\left( x \right)dx} \) bằng
A. -9
B. 9
C. 1
D. 7
Câu 1: Giá trị dương của tham số m sao cho diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x + 3\) và các đường thẳng \(y = 0,\) \(x = 0,\) \(x = m\) bằng 10 là
A. m = 5
B. m = 1
C. \(m = \frac{7}{2}.\)
D. m = 2
05/11/2021 8 Lượt xem
Câu 2: Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z = - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:
A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
05/11/2021 7 Lượt xem
Câu 3: Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và điểm \(M\left( {3;1;2} \right)\). Điểm A di chuyển trên mặt cầu \(\left( S \right)\) thỏa mãn \(\overrightarrow {OA} .\overrightarrow {MA} = - 3\) thì A thuộc mặt phẳng nào trong các mặt phẳng sau?
A. x + y + 6z - 2 = 0
B. 3x + y + 2z - 3 = 0
C. 5x + y - 2z - 4 = 0
D. 2x - 4z - 1 = 0
05/11/2021 9 Lượt xem
Câu 4: Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm \(O\left( {0;0;0} \right)\) và vuông góc với đường thẳng \(d:\,\,\frac{x}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\) là
A. x + y + z = 0
B. x + y - z = 0
C. x - y + z = 1
D. x + y - z = 1
05/11/2021 7 Lượt xem
Câu 5: Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)
C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)
05/11/2021 9 Lượt xem
Câu 6: Cho tích phân \(\int\limits_2^9 {f\left( x \right)dx} = 6\). Tính tích phân \(I = \int\limits_1^2 {{x^2}f\left( {{x^3} + 1} \right)dx} \).
A. I = 3
B. I = 2
C. I = 8
D. I = 4
05/11/2021 6 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
46 người đang thi
- 1.4K
- 122
- 50
-
95 người đang thi
- 1.0K
- 35
- 50
-
14 người đang thi
- 891
- 31
- 50
-
27 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận