Câu hỏi:

Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm \(O\left( {0;0;0} \right)\) và vuông góc với đường thẳng \(d:\,\,\frac{x}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\) là

401 Lượt xem
05/11/2021
3.8 8 Đánh giá

A. x + y + z = 0

B. x + y - z = 0

C. x - y + z = 1

D. x + y - z = 1

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Tích phân \(\int\limits_1^e {\frac{{\ln x}}{x}dx} \) bằng:

A. \(\frac{{{e^2} + 1}}{2}\)

B. \(\frac{1}{2}\)

C. \( - \frac{1}{2}\)

D. \(\frac{{{e^2} - 1}}{2}\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 4:

Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z =  - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:

A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)

B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)

C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)

D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 6:

Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:

A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)  

B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)

C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)

D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)

Xem đáp án

05/11/2021 9 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
Thông tin thêm
  • 75 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh