Câu hỏi:
Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)
C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)
05/11/2021 7 Lượt xem
Câu 2: Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là
A. \(F\left( x \right) = - \frac{1}{2}\cos 2x + C.\)
B. \(F\left( x \right) = - \cos 2x + C.\)
C. \(F\left( x \right) = - 2\cos 2x + C.\)
D. \(F\left( x \right) = \frac{1}{2}\cos 2x + C.\)
05/11/2021 8 Lượt xem
Câu 3: Cho biết \(\int\limits_0^1 {x\sqrt {{x^2} + 1} dx = \frac{{a\sqrt 2 - 1}}{b}} \) với \(a,\,\,b\) là các số tự nhiên. Giá trị của \({a^2} - {b^2}\) bằng
A. -5
B. 5
C. 2
D. 1
05/11/2021 10 Lượt xem
Câu 4: Trong mặt phẳng tọa độ (Oxy) cho hình phẳng D giới hạn bởi các đường \(y = 2{x^2}\), \(y = \frac{{{x^2}}}{8}\), \(y = - x + 6\). Tính diện tích hình phẳng D nằm bên phải của trục tung
A. \(S = \frac{{1075}}{{192}}\)
B. \(S = \frac{{135}}{{64}}\)
C. \(S = \frac{{185}}{{24}}\)
D. \(S = \frac{{335}}{{96}}\)
05/11/2021 7 Lượt xem
Câu 5: Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1;\) \(x = 2\) bằng
A. \(\frac{7}{3}.\)
B. \(\frac{2}{3}.\)
C. \(\frac{3}{2}.\)
D. \(\frac{1}{3}.\)
05/11/2021 7 Lượt xem
Câu 6: Trong không gian Oxyz, phương trình mặt cầu có tâm \(I\left( { - 1;1; - 2} \right)\) và đi qua điểm \(A\left( {2;1;2} \right)\) là
A. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 25.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 5.\)
C. \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)
05/11/2021 9 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 285
- 50
-
71 người đang thi
- 1.3K
- 122
- 50
-
68 người đang thi
- 939
- 35
- 50
-
35 người đang thi
- 825
- 31
- 50
-
56 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận