Câu hỏi:
Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)
C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)
Câu 1: Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y + 2{\rm{z}} - 2 = 0\). Phương trình của mặt phẳng chứa trục Oy và vuông góc với \(\left( P \right)\) là
A. \(2{\rm{x}} - z + 2 = 0\).
B. \(2x - z = 0\).
C. \(2x + z = 0\).
D. \(2x + y - z = 0.\)
05/11/2021 7 Lượt xem
Câu 2: Trong không gian Oxyz, cho hai đường thẳng \(\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\) và \(\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\). Gọi M là trung điểm đoạn vuông góc chung của hai đường thẳng trên. Tính độ dài đoạn thẳng OM.
A. \(OM = \sqrt {35} \)
B. \(OM = 2\sqrt {35} \)
C. \(OM = \frac{{\sqrt {14} }}{2}\)
D. \(OM = \sqrt 5 \)
05/11/2021 8 Lượt xem
Câu 3: Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x - z + 1 = 0\) có một vecto pháp tuyến là
A. \(\overrightarrow n = \left( {2; - 1;1} \right)\).
B. \(\overrightarrow n = \left( {2;0; - 1} \right)\)
C. \(\overrightarrow n = \left( {2;0;1} \right)\)
D. \(\overrightarrow n = \left( {2;1; - 1} \right)\)
05/11/2021 7 Lượt xem
Câu 4: Trong không gian Oxyz, cho hai điểm \(M\left( {2;1; - 2} \right);N\left( {4; - 5;1} \right)\). Độ dài đoạn thẳng MN bằng
A. \(\sqrt {41} \)
B. 7
C. 49
D. \(\sqrt 7 \)
05/11/2021 7 Lượt xem
Câu 5: Gọi z là một nghiệm của phương trình \({z^2} - z + 1 = 0\). Giá trị của biểu thức \(M = {z^{2019}} + {z^{2018}} + \frac{1}{{{z^{2019}}}} + \frac{1}{{{z^{2018}}}} + 5\) bằng
A. 5
B. 2
C. 7
D. -1
05/11/2021 6 Lượt xem
Câu 6: Cho hàm số \(F\left( x \right) = {x^2}\) là một nguyên hàm của hàm số \(f\left( x \right){e^{4{\rm{x}}}}\), hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\)
Họ nguyên hàm của hàm số \(f'\left( x \right){e^{4{\rm{x}}}}\) là
A. \( - 4{x^2} + 3x + C.\)
B. \( - 4{x^2} + 2x + C.\)
C. \(4{x^2} + 2x + C.\)
D. \( - 4{x^2} + x + C.\)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
36 người đang thi
- 1.3K
- 122
- 50
-
83 người đang thi
- 994
- 35
- 50
-
37 người đang thi
- 881
- 31
- 50
-
84 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận