Câu hỏi:
Trong không gian Oxyz, cho hai điểm \(A\left( {0;1;2} \right),\) \(B\left( { - 3;4; - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - 2y - z - 2 = 0\). Xét điểm M thay đổi thuộc \(\left( P \right)\), giá trị nhỏ nhất của \(2M{A^2} + M{B^2}\) bằng
A. 27
B. 45
C. 21
D. 18
Câu 1: Trong không gian với hệ tọa độ Oxy, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt phẳng \(\left( P \right):\,\,2x + 3y + z - 17 = 0\).
A. \(M\left( {0;0; - 3} \right)\)
B. \(M\left( {0;0;3} \right)\)
C. \(M\left( {0;0; - 4} \right)\)
D. \(M\left( {0;0;4} \right)\)
05/11/2021 9 Lượt xem
Câu 2: Diện tích của hình phẳng giới hạn bởi hai đường thẳng \(y = 18{x^2}\) và \(y = 18x\) bằng
A. 6
B. 4
C. 2
D. 3
05/11/2021 7 Lượt xem
Câu 3: Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x - z + 1 = 0\) có một vecto pháp tuyến là
A. \(\overrightarrow n = \left( {2; - 1;1} \right)\).
B. \(\overrightarrow n = \left( {2;0; - 1} \right)\)
C. \(\overrightarrow n = \left( {2;0;1} \right)\)
D. \(\overrightarrow n = \left( {2;1; - 1} \right)\)
05/11/2021 7 Lượt xem
Câu 4: Có bao nhiêu giá trị nguyên dương của tham số m để phương trình \({25^x} - {2.15^x} + \left( {m - 4} \right){.9^x} = 0\) có nghiệm dương ?
A. 3
B. 2
C. 4
D. 5
05/11/2021 7 Lượt xem
Câu 5: Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z = - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:
A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
05/11/2021 7 Lượt xem
Câu 6: Cho biết \(\int\limits_0^1 {x\sqrt {{x^2} + 1} dx = \frac{{a\sqrt 2 - 1}}{b}} \) với \(a,\,\,b\) là các số tự nhiên. Giá trị của \({a^2} - {b^2}\) bằng
A. -5
B. 5
C. 2
D. 1
05/11/2021 10 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
80 người đang thi
- 1.2K
- 122
- 50
-
48 người đang thi
- 839
- 35
- 50
-
14 người đang thi
- 730
- 31
- 50
-
50 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận