Câu hỏi:

Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là

395 Lượt xem
05/11/2021
3.7 10 Đánh giá

A. \(F\left( x \right) =  - \frac{1}{2}\cos 2x + C.\)

B. \(F\left( x \right) =  - \cos 2x + C.\)

C. \(F\left( x \right) =  - 2\cos 2x + C.\)

D. \(F\left( x \right) = \frac{1}{2}\cos 2x + C.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 5:

Tích phân \(\int\limits_1^e {\frac{{\ln x}}{x}dx} \) bằng:

A. \(\frac{{{e^2} + 1}}{2}\)

B. \(\frac{1}{2}\)

C. \( - \frac{1}{2}\)

D. \(\frac{{{e^2} - 1}}{2}\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 6:

Cho tích phân \(I = \int\limits_0^\pi  {{x^2}\cos xdx} \) và đặt \(u = {x^2},\,\,dv = \cos xdx\). Mệnh đề nào sau đây là mệnh đề
đúng?

A. \(I = \left. {{x^2}\sin x} \right|_0^\pi  - \int\limits_0^\pi  {x.\sin xdx} \)

B. \(I = \left. {{x^2}.\sin x} \right|_0^\pi  + 2\int\limits_0^\pi  {x.\sin xdx} \)

C. \(I = \left. {{x^2}\sin x} \right|_0^\pi  - 2\int\limits_0^\pi  {x.\sin xdx} \)

D. \(I = \left. {{x^2}\sin x} \right|_0^\pi  + \int\limits_0^\pi  {x.\sin xdx} \)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
Thông tin thêm
  • 75 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh