Câu hỏi:
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 2 = 0\) và điểm \(I\left( {1;2; - 3} \right)\). Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt phẳng \(\left( P \right)\) bằng:
A. 1
B. \(\frac{{11}}{3}\)
C. 3
D. \(\frac{1}{3}\)
Câu 1: Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 2;3} \right),\) \(B\left( {3;2; - 2} \right)\) và mặt phẳng \(\left( P \right):x + 2y - 4z - 7 = 0\). Đường thẳng AB cắt mặt phẳng \(\left( P \right)\) tại M. Giá trị của biểu thức \(\frac{{MA}}{{MB}}\) bằng
A. \(\frac{5}{{21}}.\)
B. 1
C. \(\frac{1}{3}.\)
D. \(\frac{{11}}{4}.\)
05/11/2021 7 Lượt xem
Câu 2: Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và điểm \(M\left( {3;1;2} \right)\). Điểm A di chuyển trên mặt cầu \(\left( S \right)\) thỏa mãn \(\overrightarrow {OA} .\overrightarrow {MA} = - 3\) thì A thuộc mặt phẳng nào trong các mặt phẳng sau?
A. x + y + 6z - 2 = 0
B. 3x + y + 2z - 3 = 0
C. 5x + y - 2z - 4 = 0
D. 2x - 4z - 1 = 0
05/11/2021 9 Lượt xem
Câu 3: Tích phân \(\int\limits_1^e {\frac{{\ln x}}{x}dx} \) bằng:
A. \(\frac{{{e^2} + 1}}{2}\)
B. \(\frac{1}{2}\)
C. \( - \frac{1}{2}\)
D. \(\frac{{{e^2} - 1}}{2}\)
05/11/2021 8 Lượt xem
Câu 4: Cho hàm số \(f\left( x \right)\) thỏa mãn \({\left( {f'\left( x \right)} \right)^2} + f\left( x \right).f''\left( x \right) = 15{x^4} + 12x,\,\,\forall x \in \mathbb{R}\) và \(f\left( 0 \right) = f'\left( 0 \right) = 1\). Giá trị của \({f^2}\left( 1 \right)\) bằng:
A. 8
B. \(\frac{5}{2}\)
C. 10
D. 4
05/11/2021 7 Lượt xem
Câu 5: Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x - z + 1 = 0\) có một vecto pháp tuyến là
A. \(\overrightarrow n = \left( {2; - 1;1} \right)\).
B. \(\overrightarrow n = \left( {2;0; - 1} \right)\)
C. \(\overrightarrow n = \left( {2;0;1} \right)\)
D. \(\overrightarrow n = \left( {2;1; - 1} \right)\)
05/11/2021 7 Lượt xem
Câu 6: Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)
C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)
05/11/2021 9 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
32 người đang thi
- 1.2K
- 122
- 50
-
80 người đang thi
- 868
- 35
- 50
-
38 người đang thi
- 750
- 31
- 50
-
39 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận