Câu hỏi:

Trong mặt phẳng tọa độ (Oxy) cho hình phẳng D giới hạn bởi các đường \(y = 2{x^2}\), \(y = \frac{{{x^2}}}{8}\), \(y =  - x + 6\). Tính diện tích hình phẳng D nằm bên phải của trục tung

502 Lượt xem
05/11/2021
3.5 6 Đánh giá

A. \(S = \frac{{1075}}{{192}}\)  

B. \(S = \frac{{135}}{{64}}\)

C. \(S = \frac{{185}}{{24}}\)

D. \(S = \frac{{335}}{{96}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Trong không gian Oxyz, cho hai điểm \(A\left( { - 2; - 1;3} \right)\) và \(B\left( {0;3;1} \right)\). Tọa độ trung điểm của đoạn thẳng AB là:

A. \(\left( {2;4; - 2} \right)\)

B. \(\left( { - 2;2;4} \right)\)

C. \(\left( { - 1;1;2} \right)\)

D. \(\left( { - 2; - 4;2} \right)\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 3:

Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:

A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)  

B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)

C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)

D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)

Xem đáp án

05/11/2021 9 Lượt xem

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
Thông tin thêm
  • 75 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh