Câu hỏi:

Trong mặt phẳng tọa độ (Oxy) cho hình phẳng D giới hạn bởi các đường \(y = 2{x^2}\), \(y = \frac{{{x^2}}}{8}\), \(y =  - x + 6\). Tính diện tích hình phẳng D nằm bên phải của trục tung

478 Lượt xem
05/11/2021
3.5 6 Đánh giá

A. \(S = \frac{{1075}}{{192}}\)  

B. \(S = \frac{{135}}{{64}}\)

C. \(S = \frac{{185}}{{24}}\)

D. \(S = \frac{{335}}{{96}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

05/11/2021 8 Lượt xem

Câu 5:

Trong không gian Oxyz, cho hai điểm \(A\left( {1;3;5} \right)\) và \(B\left( {1; - 1;1} \right)\). Trung điểm của đoạn thẳng AB có tọa độ là

A. \(\left( {2;2;6} \right)\)

B. \(\left( {0; - 4; - 4} \right)\)

C. \(\left( {0; - 2; - 2} \right)\)

D. \(\left( {1;1;3} \right)\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 6:

Cho tích phân \(I = \int\limits_0^\pi  {{x^2}\cos xdx} \) và đặt \(u = {x^2},\,\,dv = \cos xdx\). Mệnh đề nào sau đây là mệnh đề
đúng?

A. \(I = \left. {{x^2}\sin x} \right|_0^\pi  - \int\limits_0^\pi  {x.\sin xdx} \)

B. \(I = \left. {{x^2}.\sin x} \right|_0^\pi  + 2\int\limits_0^\pi  {x.\sin xdx} \)

C. \(I = \left. {{x^2}\sin x} \right|_0^\pi  - 2\int\limits_0^\pi  {x.\sin xdx} \)

D. \(I = \left. {{x^2}\sin x} \right|_0^\pi  + \int\limits_0^\pi  {x.\sin xdx} \)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
Thông tin thêm
  • 75 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh