Câu hỏi:

Trong mặt phẳng tọa độ (Oxy) cho hình phẳng D giới hạn bởi các đường \(y = 2{x^2}\), \(y = \frac{{{x^2}}}{8}\), \(y =  - x + 6\). Tính diện tích hình phẳng D nằm bên phải của trục tung

540 Lượt xem
05/11/2021
3.5 6 Đánh giá

A. \(S = \frac{{1075}}{{192}}\)  

B. \(S = \frac{{135}}{{64}}\)

C. \(S = \frac{{185}}{{24}}\)

D. \(S = \frac{{335}}{{96}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:

A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)  

B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)

C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)

D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 4:

Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z =  - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:

A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)

B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)

C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)

D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 5:

Cho số phức \(z = 2 - i\). Trong mặt phẳng tọa độ Oxyz, điểm biểu diễn của số phức \(\overline z \) có tọa độ là

A. \(\left( {2; - 1} \right).\)

B. \(\left( {2;1} \right).\)

C. \(\left( {1;2} \right).\)

D. \(\left( { - 2;1} \right).\)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
Thông tin thêm
  • 75 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh